Suppr超能文献

多序列功能注释与广义隐马尔可夫系统发育

Multiple-sequence functional annotation and the generalized hidden Markov phylogeny.

作者信息

McAuliffe Jon D, Pachter Lior, Jordan Michael I

机构信息

Department of Statistics, University of California, 367 Evans Hall, Berkeley, CA 94720, USA.

出版信息

Bioinformatics. 2004 Aug 12;20(12):1850-60. doi: 10.1093/bioinformatics/bth153. Epub 2004 Feb 26.

Abstract

MOTIVATION

Phylogenetic shadowing is a comparative genomics principle that allows for the discovery of conserved regions in sequences from multiple closely related organisms. We develop a formal probabilistic framework for combining phylogenetic shadowing with feature-based functional annotation methods. The resulting model, a generalized hidden Markov phylogeny (GHMP), applies to a variety of situations where functional regions are to be inferred from evolutionary constraints.

RESULTS

We show how GHMPs can be used to predict complete shared gene structures in multiple primate sequences. We also describe shadower, our implementation of such a prediction system. We find that shadower outperforms previously reported ab initio gene finders, including comparative human-mouse approaches, on a small sample of diverse exonic regions. Finally, we report on an empirical analysis of shadower's performance which reveals that as few as five well-chosen species may suffice to attain maximal sensitivity and specificity in exon demarcation.

AVAILABILITY

A Web server is available at http://bonaire.lbl.gov/shadower

摘要

动机

系统发育影子法是一种比较基因组学原理,可用于发现多个亲缘关系密切的生物体序列中的保守区域。我们开发了一个正式的概率框架,用于将系统发育影子法与基于特征的功能注释方法相结合。由此产生的模型,即广义隐马尔可夫系统发育模型(GHMP),适用于从进化约束推断功能区域的各种情况。

结果

我们展示了如何使用GHMP来预测多个灵长类序列中完整的共享基因结构。我们还描述了shadower,即我们对这种预测系统的实现。我们发现,在一小部分不同的外显子区域样本上,shadower的表现优于先前报道的从头基因预测工具,包括比较人类-小鼠的方法。最后,我们报告了对shadower性能的实证分析,结果表明,只需选择五个精心挑选的物种,就可能足以在外显子划分中实现最大的灵敏度和特异性。

可用性

可通过http://bonaire.lbl.gov/shadower访问网络服务器。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验