Suppr超能文献

细胞色素C氧化酶中电子传递途径的动力学

Dynamics of electron transfer pathways in cytochrome C oxidase.

作者信息

Tan Ming-Liang, Balabin Ilya, Onuchic José Nelson

机构信息

Center for Theoretical Biological Physics and Department of Physics, University of California at San Diego, La Jolla, California 92093-0374, USA.

出版信息

Biophys J. 2004 Mar;86(3):1813-9. doi: 10.1016/S0006-3495(04)74248-4.

Abstract

Cytochrome c oxidase mediates the final step of electron transfer reactions in the respiratory chain, catalyzing the transfer between cytochrome c and the molecular oxygen and concomitantly pumping protons across the inner mitochondrial membrane. We investigate the electron transfer reactions in cytochrome c oxidase, particularly the control of the effective electronic coupling by the nuclear thermal motion. The effective coupling is calculated using the Green's function technique with an extended Huckel level electronic Hamiltonian, combined with all-atom molecular dynamics of the protein in a native (membrane and solvent) environment. The effective coupling between Cu(A) and heme a is found to be dominated by the pathway that starts from His(B204). The coupling between heme a and heme a(3) is dominated by a through-space jump between the two heme rings rather than by covalent pathways. In the both steps, the effective electronic coupling is robust to the thermal nuclear vibrations, thereby providing fast and efficient electron transfer.

摘要

细胞色素c氧化酶介导呼吸链中电子传递反应的最后一步,催化细胞色素c与分子氧之间的电子传递,并同时将质子泵过线粒体内膜。我们研究细胞色素c氧化酶中的电子传递反应,特别是核热运动对有效电子耦合的控制。使用格林函数技术和扩展休克尔能级电子哈密顿量计算有效耦合,并结合蛋白质在天然(膜和溶剂)环境中的全原子分子动力学。发现Cu(A)与血红素a之间的有效耦合主要由始于His(B204)的路径主导。血红素a与血红素a(3)之间的耦合主要由两个血红素环之间的空间跳跃而非共价路径主导。在这两个步骤中,有效电子耦合对热核振动具有鲁棒性,从而实现快速高效的电子传递。

相似文献

1
Dynamics of electron transfer pathways in cytochrome C oxidase.
Biophys J. 2004 Mar;86(3):1813-9. doi: 10.1016/S0006-3495(04)74248-4.
2
Internal electron-transfer reactions in cytochrome c oxidase.
Biochemistry. 1996 May 7;35(18):5611-5. doi: 10.1021/bi960260m.
3
Kinetics of the terminal electron transfer step in cytochrome c oxidase.
J Phys Chem B. 2012 Feb 16;116(6):1876-83. doi: 10.1021/jp209175j. Epub 2012 Feb 7.
4
A cooperative model for proton pumping in cytochrome c oxidase.
Biochim Biophys Acta. 2004 Apr 12;1655(1-3):353-64. doi: 10.1016/j.bbabio.2003.06.002.
5
The protonation state of a heme propionate controls electron transfer in cytochrome c oxidase.
Biochemistry. 2005 Aug 9;44(31):10466-74. doi: 10.1021/bi0502745.
6
The proton/electron coupling ratio at heme a and Cu(A) in bovine heart cytochrome c oxidase.
Biochemistry. 2000 Dec 19;39(50):15454-61. doi: 10.1021/bi001940z.
7
Structural elements involved in electron-coupled proton transfer in cytochrome c oxidase.
FEBS Lett. 2004 Jun 1;567(1):103-10. doi: 10.1016/j.febslet.2004.04.027.
8
Electron transfer pathways in cytochrome c oxidase.
Biochim Biophys Acta. 2011 Oct;1807(10):1305-13. doi: 10.1016/j.bbabio.2011.03.003. Epub 2011 Mar 16.
9
Elementary steps of proton translocation in the catalytic cycle of cytochrome oxidase.
Biochim Biophys Acta. 2006 May-Jun;1757(5-6):401-7. doi: 10.1016/j.bbabio.2006.05.026. Epub 2006 May 23.

引用本文的文献

2
In-depth single-cell transcriptomic exploration of the regenerative dynamics in stony coral.
Commun Biol. 2025 Apr 23;8(1):652. doi: 10.1038/s42003-025-08089-6.
4
Multifaceted aspects of charge transfer.
Phys Chem Chem Phys. 2020 Oct 14;22(38):21583-21629. doi: 10.1039/d0cp01556c. Epub 2020 Aug 12.
5
Oxygen Activation and Energy Conservation by Cytochrome c Oxidase.
Chem Rev. 2018 Mar 14;118(5):2469-2490. doi: 10.1021/acs.chemrev.7b00664. Epub 2018 Jan 19.
6
Correlation between square of electron tunneling matrix element and donor-acceptor distance in fluctuating protein media.
Biophysics (Nagoya-shi). 2008 Oct 15;4:19-28. doi: 10.2142/biophysics.4.19. eCollection 2008.
7
Fibromyalgia syndrome: metabolic and autophagic processes in intermittent cold stress mice.
Pharmacol Res Perspect. 2016 Sep 27;4(5):e00248. doi: 10.1002/prp2.248. eCollection 2016 Oct.
8
Evidence for Fast Electron Transfer between the High-Spin Haems in Cytochrome bd-I from Escherichia coli.
PLoS One. 2016 May 6;11(5):e0155186. doi: 10.1371/journal.pone.0155186. eCollection 2016.
9
Electron flow in multiheme bacterial cytochromes is a balancing act between heme electronic interaction and redox potentials.
Proc Natl Acad Sci U S A. 2014 Jan 14;111(2):611-6. doi: 10.1073/pnas.1316156111. Epub 2014 Jan 2.
10
Electron flow through metalloproteins.
Chem Rev. 2014 Apr 9;114(7):3369-80. doi: 10.1021/cr4004715. Epub 2013 Nov 27.

本文引用的文献

1
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
2
Electron transfer between biological molecules by thermally activated tunneling.
Proc Natl Acad Sci U S A. 1974 Sep;71(9):3640-4. doi: 10.1073/pnas.71.9.3640.
3
Computer simulation of water in cytochrome c oxidase.
Biochim Biophys Acta. 2003 Mar 6;1557(1-3):99-107. doi: 10.1016/s0005-2728(03)00002-1.
4
The rate of internal heme-heme electron transfer in cytochrome C oxidase.
Biochemistry. 2002 Aug 20;41(33):10369-74. doi: 10.1021/bi025976y.
5
Ultrafast haem-haem electron transfer in cytochrome c oxidase.
Biochim Biophys Acta. 2001 Nov 1;1506(3):143-6. doi: 10.1016/s0005-2728(01)00220-1.
7
Dynamically controlled protein tunneling paths in photosynthetic reaction centers.
Science. 2000 Oct 6;290(5489):114-7. doi: 10.1126/science.290.5489.114.
8
Electronic structure contributions to electron transfer in blue Cu and Cu(A).
J Biol Inorg Chem. 2000 Feb;5(1):16-29. doi: 10.1007/s007750050003.
9
Electron transfer rates and equilibrium within cytochrome c oxidase.
Eur J Biochem. 2000 Feb;267(4):950-4. doi: 10.1046/j.1432-1327.2000.01072.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验