DeBeer George S, Metz M, Szilagyi R K, Wang H, Cramer S P, Lu Y, Tolman W B, Hedman B, Hodgson K O, Solomon E I
Department of Chemistry, Stanford University, Stanford, California 94305, USA.
J Am Chem Soc. 2001 Jun 20;123(24):5757-67. doi: 10.1021/ja004109i.
To evaluate the importance of the electronic structure of Cu(A) to its electron-transfer (ET) function, a quantitative description of the ground-state wave function of the mixed-valence (MV) binuclear Cu(A) center engineered into Pseudomonas aeruginosa azurin has been developed, using a combination of S K-edge and Cu L-edge X-ray absorption spectroscopies (XAS). Parallel descriptions have been developed for a binuclear thiolate-bridged MV reference model complex ((L(i)(PrdacoS)Cu)(2)) and a homovalent (II,II) analogue (L(i)(Pr2tacnS)Cu)(2), where L(i)(PrdacoS) and L(i)(Pr2tacnS) are macrocyclic ligands with attached thiolates that bridge the Cu ions. Previous studies have qualitatively defined the ground-state wave function of Cu(A) in terms of ligand field effects on the orbital orientation and the presence of a metal--metal bond. The studies presented here provide further evidence for a direct Cu--Cu interaction and, importantly, experimentally quantify the covalency of the ground-state wave function. The experimental results are further supported by DFT calculations. The nature of the ground-state wave function of Cu(A) is compared to that of the well-defined blue copper site in plastocyanin, and the importance of this wave function to the lower reorganization energy and ET function of Cu(A) is discussed. This wave function incorporates anisotropic covalency into the intra- and intermolecular ET pathways in cytochrome c oxidase. Thus, the high covalency of the Cys--Cu bond allows a path through this ligand to become competitive with a shorter His path in the intramolecular ET from Cu(A) to heme a and is particularly important for activating the intermolecular ET path from heme c to Cu(A).
为了评估铜(A)的电子结构对其电子转移(ET)功能的重要性,我们利用硫(S)K 边和铜(Cu)L 边 X 射线吸收光谱(XAS)相结合的方法,对工程改造到铜绿假单胞菌天青蛋白中的混合价(MV)双核铜(A)中心的基态波函数进行了定量描述。同时,我们还对双核硫醇盐桥联的 MV 参考模型配合物((L(i)(PrdacoS)Cu)(2))和同价(II,II)类似物(L(i)(Pr2tacnS)Cu)(2),其中 L(i)(PrdacoS)和 L(i)(Pr2tacnS)是带有连接硫醇盐的大环配体,用于桥联铜离子)进行了平行描述。以往的研究根据配体场对轨道取向的影响以及金属-金属键的存在,定性地定义了铜(A)的基态波函数。本文的研究为直接的铜-铜相互作用提供了进一步的证据,重要的是,通过实验定量了基态波函数的共价性。密度泛函理论(DFT)计算进一步支持了实验结果。我们将铜(A)的基态波函数的性质与质体蓝素中定义明确的蓝色铜位点的性质进行了比较,并讨论了该波函数对铜(A)较低重组能和 ET 功能的重要性。这个波函数将各向异性共价性纳入细胞色素 c 氧化酶的分子内和分子间 ET 途径。因此,半胱氨酸-铜键的高共价性使得通过该配体的路径在从铜(A)到血红素 a 的分子内 ET 中能够与较短的组氨酸路径竞争,并且对于激活从血红素 c 到铜(A)的分子间 ET 路径尤为重要。