Anand Ruchi, Kaminski Pierre Alexandre, Ealick Steven E
Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA.
Biochemistry. 2004 Mar 9;43(9):2384-93. doi: 10.1021/bi035723k.
The structure of class I N-deoxyribosyltransferase from Lactobacillus helveticus was determined by X-ray crystallography. Unlike class II N-deoxyribosyltransferases, which accept either purine or pyrimidine deoxynucleosides, class I enzymes are specific for purines as both the donor and acceptor base. Both class I and class II enzymes are highly specific for deoxynucleosides. The class I structure reveals similarities with the previously determined class II enzyme from Lactobacillus leichmanni [Armstrong, S. A., Cook, W. J., Short, S. A., and Ealick, S. E. (1996) Structure 4, 97-107]. The specificity of the class I enzyme for purine deoxynucleosides can be traced to a loop (residues 48-62), which shields the active site in the class II enzyme. In the class I enzyme, the purine base itself shields the active site from the solvent, while the smaller pyrimidine base cannot. The structure of the enzyme with a bound ribonucleoside shows that the nucleophilic oxygen atom of Glu101 hydrogen bonds to the O2' atom, rendering it unreactive and thus explaining the specificity for 2'-deoxynucleosides. The structure of a ribosylated enzyme intermediate reveals movements that occur during cleavage of the N-glycosidic bond. The structures of complexes with substrates and substrate analogues show that the purine base can bind in several different orientations, thus explaining the ability of the enzyme to catalyze alternate deoxyribosylation at the N3 or N7 position.
通过X射线晶体学确定了瑞士乳杆菌I类N-脱氧核糖基转移酶的结构。与II类N-脱氧核糖基转移酶不同,II类酶可接受嘌呤或嘧啶脱氧核苷,而I类酶对嘌呤具有特异性,既是供体碱基又是受体碱基。I类和II类酶对脱氧核苷都具有高度特异性。I类结构揭示了与先前确定的来自赖氏乳杆菌的II类酶的相似性[阿姆斯特朗,S.A.,库克,W.J.,肖特,S.A.,和伊莱克,S.E.(1996年)《结构》4,97 - 107]。I类酶对嘌呤脱氧核苷的特异性可追溯到一个环(残基48 - 62),该环在II类酶中屏蔽了活性位点。在I类酶中,嘌呤碱基本身将活性位点与溶剂屏蔽开,而较小的嘧啶碱基则不能。与结合核糖核苷的酶的结构表明,Glu101的亲核氧原子与O2'原子形成氢键,使其无反应性,从而解释了对2'-脱氧核苷的特异性。核糖基化酶中间体的结构揭示了在N-糖苷键裂解过程中发生的运动。与底物和底物类似物的复合物结构表明,嘌呤碱基可以以几种不同的方向结合,从而解释了该酶催化在N3或N7位置进行交替脱氧核糖基化的能力。