Suppr超能文献

Isoquinoline alkaloids. Inhibitory actions on cation-dependent ATP-phosphohydrolases.

作者信息

Meyerson L R, McMurtrey K D, Davis V E

出版信息

Neurochem Res. 1978 Apr;3(2):239-57. doi: 10.1007/BF00964063.

Abstract

Representatives of eleven different classes of isoquinoline alkaloids inhibit Na+, K+-ATPase and Mg2+-ATPase in rat brain microsomal preparations. In most cases the Na+, K+-ATPase is more sensitive than Mg2+-ATPase to inhibition by the alkaloids. The classes of alkaloids can be ranked according to potency of inhibition of Na+, K+-ATPase. Protoberberines are most effective, followed in decreasing order by benzophenanthridines, benzylisoquinolines, aporphines, tetrahydroprotoberberines, pavines, protopines, isoquinolines, tetrahydrobenzylisoquinolines, morphinanes, and tetrahydroisoquinolines. As specific representatives of each of the first four classes of alkaloids, berberine, sanguinarine, papaveroline and 1,2,10,11-tetrahydroxyaporphine, respectively, prove most valuable in kinetic studies because they exhibit the greatest inhibitory action on brain Na+, K+-ATPase. Kinetic analyses plotted in double reciprocal form reveal that berberine and 1,2,10,11-tetrahydroxyaporphine are simple linear competitive inhibitors with respect to ATP, whereas sanguinarine and papaveroline are simple linear noncompetitive inhibitors. These four representative alkaloids exhibit non-linear competitive inhibition with respect to Na+-activation. Additionally, these alkaloids significantly inhibit rat brain microsomal K+-activated pNPPase. The results demonstrate that certain members of several classes of isoquinoline alkaloids markedly affect various cation-dependent phosphohydrolases in vitro.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验