Suppr超能文献

多通道共聚焦图像的自动化高通量共定位分析。

Automated high through-put colocalization analysis of multichannel confocal images.

作者信息

Kreft M, Milisav I, Potokar M, Zorec R

机构信息

Lab. Neuroendocrinology-Molecular Cell Physiology, Inst. Pathophysiology, Medical Faculty, Zaloska 4, 1000 Ljubljana and Celica Biomed. Sciences Center, Stegne 21, 1000 Ljubljana, Slovenia.

出版信息

Comput Methods Programs Biomed. 2004 Apr;74(1):63-7. doi: 10.1016/S0169-2607(03)00071-3.

Abstract

The laser scanning confocal microscope (LSCM) generates images of multiple labelled fluorescent samples. Colocalization of fluorescent labels is frequently examined. Here we present an example where localization of fluorescent analogues of cloned protein were referenced to fluorescent antibodies directed against the proteins of cellular compartments. Colocalization is usually evaluated by visual inspection of signal overlap or by using commercially available software tools, but there are limited possibilities to automate the analysis of large amounts of data. We developed a simple tool using Matlab to automate the colocalization procedure and to exclude the biased estimations resulting from visual inspections of images. The script in Matlab language code automatically imports confocal images and converts them into arrays. The contrast of all images is uniformly set by linearly reassigning the values of pixel intensities to use the full 8-bit range (0-255). Images are binarized on several threshold levels. The area above a certain threshold level is summed for each channel of the image and for colocalized regions. As a result, count of pixels above several threshold levels in any number of images is saved in an ASCII file. In addition Pearson's r correlation coefficient is calculated for fluorescence intensities of both confocal channels. Using this approach quick quantitative analysis of colocalization of hundreds of images is possible. In addition, such automated procedure is not biased by the examiner's subject visualization.

摘要

激光扫描共聚焦显微镜(LSCM)可生成多个标记荧光样本的图像。荧光标记的共定位情况经常会被检测。在此,我们给出一个例子,即克隆蛋白的荧光类似物的定位是参照针对细胞区室蛋白的荧光抗体来进行的。共定位通常通过目视检查信号重叠情况或使用市售软件工具来评估,但对大量数据进行自动化分析的可能性有限。我们利用Matlab开发了一个简单工具,用于自动化共定位程序,并排除因对图像进行目视检查而产生的偏差估计。用Matlab语言代码编写的脚本会自动导入共聚焦图像并将其转换为数组。通过线性重新分配像素强度值以使用完整的8位范围(0 - 255),统一设置所有图像的对比度。在几个阈值水平上对图像进行二值化处理。对图像的每个通道以及共定位区域,计算高于某个阈值水平的面积。结果,任意数量图像中高于几个阈值水平的像素计数会保存在一个ASCII文件中。此外,还会计算两个共聚焦通道荧光强度的皮尔逊相关系数r。使用这种方法,可以对数百张图像的共定位进行快速定量分析。此外,这种自动化程序不会受到检查者主观视觉的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验