Reis F D A Aarão
Instituto de Física, Universidade Federal Fluminense, Avenida Litorânea s/n, 24210-340 Niterói Rio de Jeneiro, Brazil.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Feb;69(2 Pt 1):021610. doi: 10.1103/PhysRevE.69.021610. Epub 2004 Feb 27.
We analyze simulation results of a model proposed for etching of a crystalline solid and results of other discrete models in the (2+1)-dimensional Kardar-Parisi-Zhang (KPZ) class. In the steady states, the moments W(n) of orders n=2,3,4 of the height distribution are estimated. Results for the etching model, the ballistic deposition model, and the temperature-dependent body-centered restricted solid-on-solid model suggest the universality of the absolute value of the skewness S identical with W(3)/W(3/2)(2) and of the value of the kurtosis Q identical with W(4)/W(2)(2)-3. The sign of the skewness is the same as of the parameter lambda of the KPZ equation which represents the process in the continuum limit. The best numerical estimates, obtained from the etching model, are absolute value of S=0.26+/-0.01 and Q=0.134+/-0.015. For this model, the roughness exponent alpha=0.383+/-0.008 is obtained, accounting for a constant correction term (intrinsic width) in the scaling of the squared interface width. This value is slightly below previous estimates of extensive simulations and rules out the proposal of the exact value alpha=2/5. The conclusion is supported by results for the ballistic deposition model. Independent estimates of the dynamical exponent and of the growth exponent are 1.605< or =z< or =1.64 and beta=0.229+/-0.005, respectively, which are consistent with the relations alpha+z=2 and z=alpha/beta.
我们分析了一个用于晶体固体蚀刻的模型的模拟结果,以及(2 + 1)维Kardar - Parisi - Zhang(KPZ)类中其他离散模型的结果。在稳态下,估计了高度分布的n = 2、3、4阶矩W(n)。蚀刻模型、弹道沉积模型和与温度相关的体心受限固 - 固模型的结果表明,偏度S的绝对值(与W(3)/W(3/2)(2)相同)和峰度Q的值(与W(4)/W(2)(2) - 3相同)具有普遍性。偏度的符号与KPZ方程的参数lambda相同,该参数在连续极限中表示该过程。从蚀刻模型获得的最佳数值估计为|S| = 0.26 ± 0.01和Q = 0.134 ± 0.015。对于该模型,获得粗糙度指数α = 0.383 ± 0.008,这考虑了平方界面宽度标度中的一个常数校正项(固有宽度)。该值略低于先前广泛模拟的估计值,并排除了α = 2/5的精确值提议。弹道沉积模型的结果支持了这一结论。动力学指数和生长指数的独立估计分别为1.605 ≤ z ≤ 1.64和β =