Yevtushenko Oleg, Kravtsov Vladimir E
The Abdus Salam ICTP, Strada Costiera 11, 34100 Trieste, Italy.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Feb;69(2 Pt 2):026104. doi: 10.1103/PhysRevE.69.026104. Epub 2004 Feb 17.
We study the density of states (DOS) for disordered systems whose spectral statistics can be described by a Gaussian ensemble of almost-diagonal Hermitian random matrices. The matrices have independent random entries H(i > or =j) with small off-diagonal elements: <|H(i not equal to j)|2> << <|H(ii)|2> approximately 1. Using the recently suggested method of a virial expansion in the number of interacting energy levels [J. Phys. A 36, 8265 (2003)], we calculate the leading correction to the Poissonian DOS in the cases of the Gaussian orthogonal and unitary ensembles. We apply the general formula to the critical power-law banded random matrices and the unitary Moshe-Neuberger-Shapiro model and compare the DOS's of these models.
我们研究了无序系统的态密度(DOS),其谱统计可以用几乎对角的厄米特随机矩阵的高斯系综来描述。这些矩阵具有独立的随机元素H(i≥j),且非对角元素较小:<|H(i≠j)|²> << <|H(ii)|²> ≈ 1。利用最近提出的在相互作用能级数量上进行维里展开的方法[《物理学杂志A》36, 8265 (2003)],我们计算了高斯正交和酉系综情况下对泊松态密度的主要修正。我们将通用公式应用于临界幂律带状随机矩阵和酉莫舍 - 诺伊贝格尔 - 夏皮罗模型,并比较这些模型的态密度。