Suppr超能文献

随机、自伴、非厄米矩阵的能级密度与能级间距分布。

Level density and level-spacing distributions of random, self-adjoint, non-Hermitian matrices.

作者信息

Joglekar Yogesh N, Karr William A

机构信息

Department of Physics, Indiana University Purdue University Indianapolis (IUPUI), Indianapolis, Indiana 46202, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Mar;83(3 Pt 1):031122. doi: 10.1103/PhysRevE.83.031122. Epub 2011 Mar 18.

Abstract

We investigate the level density σ(x) and the level-spacing distribution p(s) of random matrices M = AF ≠ M{†}, where F is a (diagonal) inner product and A is a random, real, symmetric or complex, Hermitian matrix with independent entries drawn from a probability distribution q(x) with zero mean and finite higher moments. Although not Hermitian, the matrix M is self-adjoint with respect to F and thus has purely real eigenvalues. We find that the level density σ{F}(x) is independent of the underlying distribution q(x) and solely characterized by F, and therefore generalizes the Wigner semicircle distribution σ{W}(x). We find that the level-spacing distributions p(s) are independent of q(x), and are dependent upon both the inner product F and whether A is real or complex, and therefore generalize the Wigner surmise for level spacing. Our results suggest F-dependent generalizations of the well-known Gaussian Orthogonal Ensemble and Gaussian Unitary Ensemble classes.

摘要

我们研究随机矩阵(M = AF\neq M^{\dagger})的能级密度(\sigma(x))和能级间距分布(p(s)),其中(F)是一个(对角)内积,(A)是一个随机的实对称或复厄米矩阵,其独立元素取自均值为零且具有有限高阶矩的概率分布(q(x))。尽管矩阵(M)不是厄米矩阵,但它关于(F)是自伴的,因此具有纯实特征值。我们发现能级密度(\sigma_{F}(x))与基础分布(q(x))无关,仅由(F)表征,因此推广了维格纳半圆分布(\sigma_{W}(x))。我们发现能级间距分布(p(s))与(q(x))无关,并且取决于内积(F)以及(A)是实矩阵还是复矩阵,因此推广了能级间距的维格纳推测。我们的结果表明了对著名的高斯正交系综和高斯酉系综类的与(F)相关的推广。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验