Kong Xiang-Mu, Yang Z R
CCAST (World Laboratory), Beijing 100080, China.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Jan;69(1 Pt 2):016101. doi: 10.1103/PhysRevE.69.016101. Epub 2004 Jan 13.
The critical dynamics of the kinetic Glauber-Ising model is studied on a family of the diamond-type hierarchical lattices with various branches. By carrying out the time-dependent real-space renormalization-group transformation to the master equation of the systems considered, the dynamic exponent is calculated. We find that the dynamic exponent depends on fractal dimension d(f) or the branch number m in a generator, and that it increases with the increase of d(f) or m. We notice that for the case of m=1 (one-dimensional spin chain, d(f)=1) our result z=2 is the same as the exact result obtained by Glauber, and for the case of m=2 (the simplest one in the diamond-type hierarchical lattices, d(f)=2) the exponent z=2.626 is higher than those of the two-dimensional regular lattice and the triangular lattice.
在具有不同分支的一族钻石型分层晶格上研究了动力学格劳伯 - 伊辛模型的临界动力学。通过对所考虑系统的主方程进行含时实空间重整化群变换,计算了动力学指数。我们发现动力学指数取决于分形维数(d(f))或生成元中的分支数(m),并且它随(d(f))或(m)的增加而增大。我们注意到,对于(m = 1)(一维自旋链,(d(f)=1))的情况,我们得到的结果(z = 2)与格劳伯得到的精确结果相同;对于(m = 2)(钻石型分层晶格中最简单的一种,(d(f)=2))的情况,指数(z = 2.626)高于二维规则晶格和三角晶格的指数。