Gardete S, Ludovice A M, Sobral R G, Filipe S R, de Lencastre H, Tomasz A
Molecular Genetics Laboratory, Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa, 2780 Oeiras, Portugal. Laboratory of Microbiology, The Rockefeller University, New York, New York 10021.
J Bacteriol. 2004 Mar;186(6):1705-13. doi: 10.1128/JB.186.6.1705-1713.2004.
It was shown earlier that Tn551 inserted into the C-terminal region of murE of parental methicillin-resistant Staphylococcus aureus strain COL causes a drastic reduction in methicillin resistance, accompanied by accumulation of UDP-MurNAc dipeptide in the cell wall precursor pool and incorporation of these abnormal muropeptides into the peptidoglycan of the mutant. Methicillin resistance was recovered in a suppressor mutant. The murE gene of the same strain was then put under the control of the isopropyl-beta-D-thiogalactopyranoside (IPTG)-inducible promoter P(spac). Bacteria grown in the presence of suboptimal concentrations of IPTG accumulated UDP-MurNAc dipeptide in the cell wall precursor pool. Both growth rates and methicillin resistance levels (but not resistance to other antibiotics) were a function of the IPTG concentration. Northern analysis showed a gradual increase in the transcription of murE and also in the transcription of pbpB and mecA, parallel with the increasing concentrations of IPTG in the medium. A similar increase in the transcription of pbpB and mecA, the structural genes of penicillin-binding protein 2 (PBP2) and PBP2A, was also detected in the suppressor mutant. The expression of these two proteins, which are known to play critical roles in the mechanism of staphylococcal methicillin resistance, appears to be-directly or indirectly-under the control of the murE gene. Our data suggest that the drastic reduction of the methicillin MIC seen in the murE mutant may be caused by the insufficient cellular amounts of these two PBPs.
先前研究表明,插入亲本耐甲氧西林金黄色葡萄球菌菌株COL的murE基因C端区域的Tn551会导致甲氧西林耐药性急剧降低,同时细胞壁前体池中UDP-MurNAc二肽积累,并将这些异常的胞壁肽掺入突变体的肽聚糖中。在一个抑制突变体中恢复了甲氧西林耐药性。然后将同一菌株的murE基因置于异丙基-β-D-硫代半乳糖苷(IPTG)诱导型启动子P(spac)的控制下。在次优浓度IPTG存在下生长的细菌,其细胞壁前体池中积累了UDP-MurNAc二肽。生长速率和甲氧西林耐药水平(但对其他抗生素的耐药性不是)均是IPTG浓度的函数。Northern分析表明,murE的转录以及pbpB和mecA的转录随着培养基中IPTG浓度的增加而逐渐增加。在抑制突变体中也检测到pbpB和mecA(青霉素结合蛋白2(PBP2)和PBP2A的结构基因)转录的类似增加。已知这两种蛋白在葡萄球菌甲氧西林耐药机制中起关键作用,它们的表达似乎直接或间接受murE基因的控制。我们的数据表明,murE突变体中观察到的甲氧西林MIC的急剧降低可能是由于这两种PBP的细胞内含量不足所致。