Zeden Merve S, Gallagher Laura A, Bueno Emilio, Nolan Aaron C, Ahn Jongsam, Shinde Dhananjay, Razvi Fareha, Sladek Margaret, Burke Órla, O'Neill Eoghan, Fey Paul D, Cava Felipe, Thomas Vinai C, O'Gara James P
Microbiology, School of Biological and Chemical Sciences, University of Galway, Ireland.
Department of Molecular Biology, Umeå University, MIMS - Laboratory for Molecular Infection Medicine Sweden, Umeå, Sweden.
bioRxiv. 2023 Mar 7:2023.03.03.530734. doi: 10.1101/2023.03.03.530734.
Central metabolic pathways controls virulence and antibiotic resistance, and constitute potential targets for antibacterial drugs. In the role of the pentose phosphate pathway (PPP) remains largely unexplored. Mutation of the 6-phosphogluconolactonase gene which encodes the only non-essential enzyme in the oxidative phase of the PPP, significantly increased MRSA resistance to β-lactam antibiotics, particularly in chemically defined media with glucose, and reduced oxacillin (OX)-induced lysis. Expression of the methicillin-resistance penicillin binding protein 2a and peptidoglycan architecture were unaffected. Carbon tracing and metabolomics revealed extensive metabolic reprogramming in the mutant including increased flux to glycolysis, the TCA cycle, and several cell envelope precursors, which was consistent with increased β-lactam resistance. Morphologically, mutant cells were smaller than wild-type with a thicker cell wall and ruffled surface when grown in OX. Further evidence of the pleiotropic effect of the mutation was reduced resistance to Congo Red, sulfamethoxazole and oxidative stress, and increased resistance to targocil, fosfomycin and vancomycin. Reduced binding of wheat germ agglutinin (WGA) to was indicative of lower wall teichoic acid/lipoteichoic acid levels or altered teichoic acid structures. Mutations in the or loci reversed the increased OX resistance phenotype and restored WGA binding to wild-type levels. VraFG/GraRS was previously implicated in susceptibility to cationic antimicrobial peptides and vancomycin, and these data reveal a broader role for this multienzyme membrane complex in the export of cell envelope precursors or modifying subunits required for resistance to diverse antimicrobial agents. Altogether our study highlights important roles for the PPP and VraFG/GraRS in β-lactam resistance, which will support efforts to identify new drug targets and reintroduce β-lactams in combination with adjuvants or other antibiotics for infections caused by MRSA and other β-lactam resistant pathogens.
High-level resistance to penicillin-type (β-lactam) antibiotics significantly limits the therapeutic options for patients with MRSA infections necessitating the use of newer agents, for which reduced susceptibility has already been described. Here we report for the first time that the central metabolism pentose phosphate pathway controls MRSA resistance to penicillin-type antibiotics. We comprehensively demonstrated that mutation of the PPP gene perturbed metabolism in MRSA leading to increased flux to cell envelope precursors to drive increased antibiotic resistance. Moreover, increased resistance was dependent on the VraRG/GraRS multienzyme membrane complex previously implicated in resistance to antimicrobial peptides and vancomycin. Our data thus provide new insights on MRSA mechanisms of β-lactam resistance, which will support efforts to expand the treatment options for infections caused by this and other antimicrobial resistant pathogens.
中枢代谢途径控制着毒力和抗生素耐药性,是抗菌药物的潜在靶点。磷酸戊糖途径(PPP)的作用在很大程度上仍未得到充分研究。编码PPP氧化阶段唯一非必需酶的6-磷酸葡萄糖酸内酯酶基因突变,显著增加了耐甲氧西林金黄色葡萄球菌(MRSA)对β-内酰胺类抗生素的耐药性,尤其是在含有葡萄糖的化学限定培养基中,并减少了苯唑西林(OX)诱导的裂解。耐甲氧西林青霉素结合蛋白2a的表达和肽聚糖结构未受影响。碳追踪和代谢组学揭示了突变体中广泛的代谢重编程,包括糖酵解、三羧酸循环和几种细胞壁前体的通量增加,这与β-内酰胺耐药性增加一致。形态学上,突变体细胞比野生型细胞小,在OX中生长时细胞壁更厚,表面有褶皱。该突变多效性作用的进一步证据是对刚果红、磺胺甲恶唑和氧化应激的耐药性降低,以及对塔格西隆、磷霉素和万古霉素的耐药性增加。小麦胚凝集素(WGA)与细胞壁的结合减少表明壁磷壁酸/脂磷壁酸水平较低或磷壁酸结构改变。 或 位点的突变逆转了增加的OX耐药表型,并使WGA结合恢复到野生型水平。VraFG/GraRS以前被认为与阳离子抗菌肽和万古霉素的敏感性有关,这些数据揭示了这种多酶膜复合物在细胞壁前体输出或修饰亚基中的更广泛作用,这些亚基是对多种抗菌剂耐药所必需的。总之,我们的研究突出了PPP和VraFG/GraRS在β-内酰胺耐药性中的重要作用,这将有助于确定新的药物靶点,并重新引入β-内酰胺类药物与佐剂或其他抗生素联合用于治疗由MRSA和其他β-内酰胺耐药病原体引起的感染。
对青霉素类(β-内酰胺)抗生素的高水平耐药性显著限制了MRSA感染患者的治疗选择,这使得必须使用新型药物,而这些新型药物的敏感性已经降低。在这里,我们首次报告中枢代谢途径磷酸戊糖途径控制着MRSA对青霉素类抗生素的耐药性。我们全面证明,PPP基因的突变扰乱了MRSA的代谢,导致细胞壁前体的通量增加,从而导致抗生素耐药性增加。此外,耐药性增加依赖于先前与抗菌肽和万古霉素耐药性有关的VraRG/GraRS多酶膜复合物。因此,我们的数据为MRSA的β-内酰胺耐药机制提供了新的见解,这将有助于扩大对由这种及其他抗菌耐药病原体引起的感染的治疗选择。