Suppr超能文献

灵长类动物和食肉动物额叶皮质的缩放比例。

The scaling of frontal cortex in primates and carnivores.

作者信息

Bush Eliot C, Allman John M

机构信息

Biology Division, California Institute of Technology, Pasadena, CA 91125, USA.

出版信息

Proc Natl Acad Sci U S A. 2004 Mar 16;101(11):3962-6. doi: 10.1073/pnas.0305760101. Epub 2004 Mar 8.

Abstract

Size has a profound effect on the structure of the brain. Many brain structures scale allometrically, that is, their relative size changes systematically as a function of brain size. Here we use independent contrasts analysis to examine the scaling of frontal cortex in 43 species of mammals including 25 primates and 15 carnivores. We find evidence for significant differences in scaling between primates and carnivores. Primate frontal cortex hyperscales relative to the rest of neocortex and the rest of the brain. The slope of frontal cortex contrasts on rest of cortex contrasts is 1.18 (95% confidence interval, 1.06-1.30) for primates, which is significantly greater than isometric. It is also significantly greater than the carnivore value of 0.94 (95% confidence interval, 0.82-1.07). This finding supports the idea that there are substantial differences in frontal cortex structure and development between the two groups.

摘要

大脑的大小对其结构有着深远的影响。许多脑结构呈现异速生长,也就是说,它们的相对大小会随着脑容量的变化而系统性地改变。在此,我们运用独立对比分析,研究了43种哺乳动物(包括25种灵长类动物和15种食肉动物)额叶皮质的异速生长情况。我们发现灵长类动物和食肉动物在异速生长方面存在显著差异的证据。相对于新皮质的其他部分和大脑的其他部分,灵长类动物的额叶皮质呈超比例生长。灵长类动物额叶皮质与皮质其他部分对比的斜率为1.18(95%置信区间为1.06 - 1.30),这显著大于等比例生长。它也显著大于食肉动物的0.94(95%置信区间为0.82 - 1.07)。这一发现支持了这样一种观点,即两组动物在额叶皮质结构和发育方面存在实质性差异。

相似文献

1
The scaling of frontal cortex in primates and carnivores.
Proc Natl Acad Sci U S A. 2004 Mar 16;101(11):3962-6. doi: 10.1073/pnas.0305760101. Epub 2004 Mar 8.
2
Canine size, shape, and bending strength in primates and carnivores.
Am J Phys Anthropol. 2008 May;136(1):65-84. doi: 10.1002/ajpa.20779.
3
Phylogenetic comparison of neuron and glia densities in the primary visual cortex and hippocampus of carnivores and primates.
Evolution. 2012 Aug;66(8):2551-63. doi: 10.1111/j.1558-5646.2012.01601.x. Epub 2012 Apr 12.
5
Brain Volume Fractions in Mammals in Relation to Behavior in Carnivores, Primates, Ungulates, and Rodents.
Brain Behav Evol. 2020;95(2):102-112. doi: 10.1159/000509579. Epub 2020 Aug 28.
6
Body size and species-richness in carnivores and primates.
Proc Biol Sci. 1998 Jan 22;265(1391):113-9. doi: 10.1098/rspb.1998.0271.
7
Postcopulatory sexual selection influences baculum evolution in primates and carnivores.
Proc Biol Sci. 2016 Dec 14;283(1844). doi: 10.1098/rspb.2016.1736.
8
Evidence for coevolution of sociality and relative brain size in three orders of mammals.
Evolution. 2007 Dec;61(12):2811-21. doi: 10.1111/j.1558-5646.2007.00229.x. Epub 2007 Oct 1.
9
Evolution of Gyrification in Carnivores.
Brain Behav Evol. 2016;88(3-4):187-203. doi: 10.1159/000453104. Epub 2017 Jan 10.
10
Evolutionary scaling and cognitive correlates of primate frontal cortex microstructure.
Brain Struct Funct. 2024 Nov;229(8):1823-1838. doi: 10.1007/s00429-023-02719-7. Epub 2023 Oct 27.

引用本文的文献

1
Bias-accounting meta-analyses overcome cerebellar neglect to refine the cerebellar behavioral topography.
bioRxiv. 2024 Nov 6:2024.10.31.621398. doi: 10.1101/2024.10.31.621398.
2
Variation and convergence in the morpho-functional properties of the mammalian neocortex.
Front Syst Neurosci. 2024 Jun 20;18:1413780. doi: 10.3389/fnsys.2024.1413780. eCollection 2024.
4
Contributions of Lower Structures to Higher Cognition: Towards a Dynamic Network Model.
J Intell. 2023 Jun 14;11(6):121. doi: 10.3390/jintelligence11060121.
5
A Comparative Perspective on the Cerebello-Cerebral System and Its Link to Cognition.
Cerebellum. 2023 Dec;22(6):1293-1307. doi: 10.1007/s12311-022-01495-0. Epub 2022 Nov 23.
6
The Evolution of Cognitive Control in Lemurs.
Psychol Sci. 2022 Sep;33(9):1408-1422. doi: 10.1177/09567976221082938. Epub 2022 Jul 25.
7
8
Multilevel atlas comparisons reveal divergent evolution of the primate brain.
Proc Natl Acad Sci U S A. 2022 Jun 21;119(25):e2202491119. doi: 10.1073/pnas.2202491119. Epub 2022 Jun 14.
9
Gross anatomy of the longitudinal fascicle of Sapajus sp.
PLoS One. 2021 Jun 24;16(6):e0252178. doi: 10.1371/journal.pone.0252178. eCollection 2021.
10
Digital Endocasting in Comparative Canine Brain Morphology.
Front Vet Sci. 2020 Oct 6;7:565315. doi: 10.3389/fvets.2020.565315. eCollection 2020.

本文引用的文献

1
Do rats have prefrontal cortex? The rose-woolsey-akert program reconsidered.
J Cogn Neurosci. 1995 Winter;7(1):1-24. doi: 10.1162/jocn.1995.7.1.1.
2
The frontal lobe of primates; cytoarchitectural studies.
Res Publ Assoc Res Nerv Ment Dis. 1948;27 (1 vol.):67-83.
3
APE: Analyses of Phylogenetics and Evolution in R language.
Bioinformatics. 2004 Jan 22;20(2):289-90. doi: 10.1093/bioinformatics/btg412.
4
Somatic sensory representation in the cerebral cortex of the racoon (Procyon lotor).
J Comp Neurol. 1959 Jun;111:469-501. doi: 10.1002/cne.901110306.
5
The scaling of white matter to gray matter in cerebellum and neocortex.
Brain Behav Evol. 2003;61(1):1-5. doi: 10.1159/000068880.
6
Placental mammal diversification and the Cretaceous-Tertiary boundary.
Proc Natl Acad Sci U S A. 2003 Feb 4;100(3):1056-61. doi: 10.1073/pnas.0334222100. Epub 2003 Jan 27.
8
The frontal cortex: does size matter?
Nat Neurosci. 2002 Mar;5(3):190-2. doi: 10.1038/nn0302-190.
9
Humans and great apes share a large frontal cortex.
Nat Neurosci. 2002 Mar;5(3):272-6. doi: 10.1038/nn814.
10
Resolution of the early placental mammal radiation using Bayesian phylogenetics.
Science. 2001 Dec 14;294(5550):2348-51. doi: 10.1126/science.1067179.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验