Suppr超能文献

Polarity and laminar formation of the optic tectum in relation to retinal projection.

作者信息

Nakamura Harukazu, Sugiyama Sayaka

机构信息

Department of Molecular Neurobiology, Graduate School of Life Sciences and Institute of Development Aging and Cancer, Tohoku University, Seiryo-machi 4-1, Aoba-ku, Sendai 980-8575, Japan.

出版信息

J Neurobiol. 2004 Apr;59(1):48-56. doi: 10.1002/neu.10339.

Abstract

The mes-metencephalic boundary (isthmus) works as an organizer for the tectum, and the organizing molecule may be Fgf8. The region where Otx2, En1, and Pax2 are expressed overlappingly may differentiate into the mesencephalon. The di-mesencephalic and mes-metencephalic boundaries are determined by repressive interaction of Pax6 and En1/Pax2 and of Otx2 and Gbx2, respectively. The optic tectum is a visual center in lower vertebrates. The tectum and the retina should be regionalized and be positionally specialized for the proper retinotopic projection. Gradient of En2 plays a crucial role in rostrocaudal polarity formation of the tectum. En2 confers caudal characteristics of the retina by inducing ephrinA2 and A5, which are the repellant molecules for the growth cones of temporal retinal ganglion cells. Grg4 antagonizes the isthmus-related genes, and is involved in the formation of di-mesencephalic boundary and tectal polarity formation at an early phase of development. Then, Grg4 plays a role in tectal laminar formation by controlling the migration pathway. Migration pathway of tectal postmitotic cells changes after E5. The late migratory cells split the early migratory neurons to form laminae h-j of SGFS. Grg4 is expressed in the ventricular layer after E5, and forces postmitotic cells to follow the late migratory pathway, though retinal fibers terminate at laminae a-f of SGFS. Misexpression of Grg4 disrupts the lamina g, and in such tecta retinal arbors invade deep into the tectal layer, indicating that lamina g is a nonpermissive lamina for the retinal arbors.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验