Suppr超能文献

带电平板上抗衡离子的模拟。

Simulations of counterions at charged plates.

作者信息

Moreira A G, Netz R R

机构信息

Max-Planck-Institut für Kolloid- und Grenzflächenforschung, D-14424 Potsdam, Germany.

出版信息

Eur Phys J E Soft Matter. 2002 May;8(1):33-58. doi: 10.1140/epje/i2001-10091-9.

Abstract

Using Monte Carlo simulations, we study the counterion distribution close to planar charged walls in two geometries: i) when only one charged wall is present and the counterions are confined to one half-space, and ii) when the counterions are confined between two equally charged walls. In both cases the surface charge is smeared out and the dielectric constant is the same everywhere. We obtain the counterion density profile and compare it with both the Poisson-Boltzmann theory (asymptotically exact in the limit of weak coupling, i.e. low surface charge, high temperature and low counterion valence) and the strong-coupling theory (valid in the opposite limit of high surface charge, low temperature and high counterion valence) and with previously calculated correction terms to both theories for different values of the coupling parameter, thereby establishing the domain of validity of the asymptotic limits. Gaussian corrections to the leading Poisson-Boltzmann behavior (obtained via a systematic loop expansion) in general perform quite poorly: At coupling strengths low enough so that the Gaussian (or one-loop) correction does describe the numerical deviations from the Poisson-Boltzmann result correctly, the leading Poisson-Boltzmann term by itself matches the data within high accuracy. This reflects the slow convergence of the loop expansion. For a single charged plane, the counterion pair correlation function indicates a behavioral change from a three-dimensional, weakly correlated counterion distribution (at low coupling) to a two-dimensional, strongly correlated counterion distribution (at high coupling), which is paralleled by the specific-heat capacity which displays a rounded hump at intermediate coupling strengths. For the case of counterions confined between two equally charged walls, we analyze the inter-wall pressure and establish the complete phase diagram, featuring attraction between the walls for large enough coupling strength and at intermediate wall separation. Depending on the thermodynamic ensemble, the phase diagram exhibits a discontinuous transition where the inter-wall distance jumps to infinity (in the absence of a chemical potential coupling to the inter-wall distance, as for charged lamellae in excess solvent) or a critical point where two coexisting states with different inter-wall distance become indistinguishable (in the presence of a chemical potential, as for charged lamellae with a finite fixed solvent fraction). The attractive pressure decays with the inter-wall distance as an inverse cube, similar to analytic predictions, although the amplitude differs by an order of magnitude from previous theoretical results. Finally, we discuss in detail our simulation methods and compare the finite-size scaling behavior of different boundary conditions (periodic, minimal image and open).

摘要

我们使用蒙特卡罗模拟方法,研究了两种几何结构中靠近平面带电壁的抗衡离子分布:i)当仅存在一个带电壁且抗衡离子被限制在一个半空间时;ii)当抗衡离子被限制在两个带等量电荷的壁之间时。在这两种情况下,表面电荷都是弥散的,且介电常数处处相同。我们得到了抗衡离子密度分布,并将其与泊松 - 玻尔兹曼理论(在弱耦合极限下渐近精确,即低表面电荷、高温和低抗衡离子价)、强耦合理论(在高表面电荷、低温和高抗衡离子价的相反极限下有效)以及针对不同耦合参数值对这两种理论的先前计算的修正项进行了比较,从而确定了渐近极限的有效范围。对主导的泊松 - 玻尔兹曼行为的高斯修正(通过系统的圈展开获得)通常表现不佳:在耦合强度足够低以至于高斯(或单圈)修正确实能正确描述与泊松 - 玻尔兹曼结果的数值偏差时,主导的泊松 - 玻尔兹曼项本身就能高精度地匹配数据。这反映了圈展开的缓慢收敛。对于单个带电平面,抗衡离子对关联函数表明其行为从三维弱相关的抗衡离子分布(在低耦合时)转变为二维强相关的抗衡离子分布(在高耦合时),这与比热容量的变化类似,比热容量在中间耦合强度处呈现出一个圆形的峰。对于抗衡离子被限制在两个带等量电荷壁之间的情况,我们分析了壁间压力并建立了完整的相图,在足够大的耦合强度和中间壁间距时,壁之间存在吸引力。根据热力学系综的不同,相图呈现出一种不连续转变,即壁间距跃升至无穷大(在不存在与壁间距的化学势耦合时,如在过量溶剂中的带电薄片)或一个临界点,在该点具有不同壁间距的两个共存态变得无法区分(在存在化学势时,如在具有有限固定溶剂分数的带电薄片中)。吸引力压力随壁间距以立方反比衰减,类似于解析预测,尽管其幅度与先前的理论结果相差一个数量级。最后,我们详细讨论了我们的模拟方法,并比较了不同边界条件(周期性、最小镜像和开放)的有限尺寸标度行为。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验