Schad L R, Ehricke H H, Wowra B, Layer G, Engenhart R, Kauczor H U, Zabel H J, Brix G, Lorenz W J
Institute of Radiology and Pathophysiology, German Cancer Research Center, Heidelberg.
Magn Reson Imaging. 1992;10(4):609-21. doi: 10.1016/0730-725x(92)90012-o.
A treatment planning system based on magnetic resonance (MR) angiographic imaging data for the radiosurgery of inoperable cerebral arteriovenous malformations is reported. MR angiography was performed using a three-dimensional (3D) velocity-compensated fast imaging with steady-state precession (FISP) sequence. Depending on the individual MR system, inhomogeneities and nonlinearities induced by eddy currents during the pulse sequence can distort the images and produce spurious displacements of the stereotactic coordinates in both the x-y plane and the z axis. If necessary, these errors in position can be assessed by means of two phantoms placed within the stereotactic guidance system--a "2D-phantom" displaying "pincushion" distortion in the image, and a "3D-phantom" displaying displacement, warp, and tilt of the image plane itself. The pincushion distortion can be "corrected" (reducing displacements from 2-3 mm to 1 mm) by calculations based on modeling the distortion as a fourth order 2D polynomial. Displacement, warp, and tilt of the image plane may be corrected by adjustment of the gradient shimming currents. After correction, the accuracy of the geometric information is limited only by the pixel resolution of the image (= 1 mm). Precise definition of the target volume could be performed by the therapist either directly in the MR images or in calculated projection MR angiograms obtained by a maximum intensity projection algorithm. MR angiography provides a sensitive, noninvasive 3D method for defining target volume and critical structures, and for calculating precise dose distributions for radiosurgery of cerebral arteriovenous malformations.
报道了一种基于磁共振(MR)血管造影成像数据的治疗计划系统,用于不可手术的脑动静脉畸形的放射外科治疗。使用三维(3D)速度补偿稳态进动快速成像(FISP)序列进行MR血管造影。根据各个MR系统的情况,脉冲序列期间由涡流引起的不均匀性和非线性会使图像失真,并在x-y平面和z轴上产生立体定向坐标的虚假位移。如有必要,可通过放置在立体定向引导系统内的两个体模来评估这些位置误差——一个“二维体模”,在图像中显示“枕形”失真,以及一个“三维体模”,显示图像平面本身的位移、翘曲和倾斜。通过将失真建模为四阶二维多项式进行计算,可以“校正”(将位移从2 - 3毫米减少到1毫米)枕形失真。图像平面的位移、翘曲和倾斜可通过调整梯度匀场电流来校正。校正后,几何信息的精度仅受图像的像素分辨率(= 1毫米)限制。治疗师可以直接在MR图像中或在通过最大强度投影算法获得的计算投影MR血管造影图中精确界定靶体积。MR血管造影为界定靶体积和关键结构,以及为脑动静脉畸形的放射外科治疗计算精确的剂量分布提供了一种灵敏、无创的三维方法。