Suppr超能文献

基于 MRI-Linac 的深度学习图像去扭曲重建。

Distortion-corrected image reconstruction with deep learning on an MRI-Linac.

机构信息

ACRF Image X Institute, Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.

State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China.

出版信息

Magn Reson Med. 2023 Sep;90(3):963-977. doi: 10.1002/mrm.29684. Epub 2023 May 1.

Abstract

PURPOSE

MRI is increasingly utilized for image-guided radiotherapy due to its outstanding soft-tissue contrast and lack of ionizing radiation. However, geometric distortions caused by gradient nonlinearities (GNLs) limit anatomical accuracy, potentially compromising the quality of tumor treatments. In addition, slow MR acquisition and reconstruction limit the potential for effective image guidance. Here, we demonstrate a deep learning-based method that rapidly reconstructs distortion-corrected images from raw k-space data for MR-guided radiotherapy applications.

METHODS

We leverage recent advances in interpretable unrolling networks to develop a Distortion-Corrected Reconstruction Network (DCReconNet) that applies convolutional neural networks (CNNs) to learn effective regularizations and nonuniform fast Fourier transforms for GNL-encoding. DCReconNet was trained on a public MR brain dataset from 11 healthy volunteers for fully sampled and accelerated techniques, including parallel imaging (PI) and compressed sensing (CS). The performance of DCReconNet was tested on phantom, brain, pelvis, and lung images acquired on a 1.0T MRI-Linac. The DCReconNet, CS-, PI-and UNet-based reconstructed image quality was measured by structural similarity (SSIM) and RMS error (RMSE) for numerical comparisons. The computation time and residual distortion for each method were also reported.

RESULTS

Imaging results demonstrated that DCReconNet better preserves image structures compared to CS- and PI-based reconstruction methods. DCReconNet resulted in the highest SSIM (0.95 median value) and lowest RMSE (<0.04) on simulated brain images with four times acceleration. DCReconNet is over 10-times faster than iterative, regularized reconstruction methods.

CONCLUSIONS

DCReconNet provides fast and geometrically accurate image reconstruction and has the potential for MRI-guided radiotherapy applications.

摘要

目的

由于 MRI 具有出色的软组织对比度和无电离辐射的特点,因此越来越多地用于图像引导的放射治疗。然而,梯度非线性(GNL)引起的几何变形限制了解剖学的准确性,可能会影响肿瘤治疗的质量。此外,MR 采集和重建速度较慢限制了有效图像引导的潜力。在这里,我们展示了一种基于深度学习的方法,可以从原始 k 空间数据快速重建失真校正图像,用于 MR 引导的放射治疗应用。

方法

我们利用可解释展开网络的最新进展,开发了一种失真校正重建网络(DCReconNet),该网络应用卷积神经网络(CNNs)来学习有效的正则化和非均匀快速傅里叶变换来对 GNL 进行编码。DCReconNet 在来自 11 位健康志愿者的公共 MR 脑部数据集上进行了训练,涵盖了全采样和加速技术,包括并行成像(PI)和压缩感知(CS)。在 1.0T MRI-Linac 上采集的体模、脑部、骨盆和肺部图像上测试了 DCReconNet 的性能。通过结构相似性(SSIM)和均方根误差(RMSE)对数值比较来衡量 DCReconNet、CS、PI 和 U-Net 重建图像的质量。还报告了每种方法的计算时间和残余失真。

结果

成像结果表明,与 CS 和 PI 重建方法相比,DCReconNet 更好地保留了图像结构。在具有四倍加速的模拟脑部图像上,DCReconNet 获得了最高的 SSIM(中位数为 0.95)和最低的 RMSE(<0.04)。DCReconNet 的速度比迭代、正则化重建方法快 10 多倍。

结论

DCReconNet 提供了快速且几何精确的图像重建,具有用于 MRI 引导的放射治疗应用的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c54/10952160/ef3bb771b8f1/MRM-90-963-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验