Koduah Martin, Iles Terence C, Nix Barry J
School of Mathematics, Cardiff University, Senghennydd Road, PO Box 926, Cardiff CF24 4YH, United Kingdom.
Clin Chem. 2004 May;50(5):901-6. doi: 10.1373/clinchem.2003.023762. Epub 2004 Mar 11.
We introduce a new criterion, the percentile inclusion probability, for comparing methods for calculating reference intervals. The criterion is compared with a previously published measure of reliability suggested by Linnet (Linnet K. Clin Chem 1987;33:381-6), the ratio of the width of the confidence interval for the percentile to that of the reference interval.
Data were simulated from a range of theoretical statistical distributions representing the shapes of data sets encountered in clinical investigations. The two-stage transformation of the data to a gaussian distribution recommended by the IFCC was compared with a nonparametric approach.
The percentile inclusion probability criterion identified that the parametric approach is in some cases seriously affected by bias. Using different parametric models, we compared nonparametric and parametric methods for two sets of clinical data and showed that the parametric approach is susceptible to model choice.
Sample sizes significantly greater than those currently recommended are required to establish reference intervals, regardless of whether parametric or nonparametric methods are used. Parametric methods are preferable when the data are truly gaussian, but are only marginally better than nonparametric methods when data transformation is needed to achieve a gaussian shape.
我们引入了一种新的标准——百分位数包含概率,用于比较计算参考区间的方法。该标准与林内特(Linnet K. Clin Chem 1987;33:381 - 6)之前发表的一种可靠性度量方法进行了比较,即百分位数置信区间宽度与参考区间宽度之比。
从一系列代表临床研究中所遇到数据集形状的理论统计分布中模拟数据。将国际临床化学和检验医学联合会(IFCC)推荐的将数据进行两阶段转换为高斯分布的方法与非参数方法进行了比较。
百分位数包含概率标准表明,参数方法在某些情况下会受到偏差的严重影响。使用不同的参数模型,我们对两组临床数据的非参数和参数方法进行了比较,结果表明参数方法容易受到模型选择的影响。
无论使用参数方法还是非参数方法,建立参考区间都需要比目前推荐的样本量显著更大。当数据真正呈高斯分布时,参数方法更可取,但在需要对数据进行转换以使其呈高斯形状时,参数方法仅比非参数方法略好。