Suppr超能文献

In vivo calcium deposition on polyvinyl alcohol matrix used in hollow fiber cell macroencapsulation devices.

作者信息

Schwenter F, Bouche N, Pralong W-F, Aebischer P

机构信息

Division of Surgical Research and Gene Therapy Center, CHUV, Lausanne University Medical School, Lausanne, Switzerland.

出版信息

Biomaterials. 2004 Aug;25(17):3861-8. doi: 10.1016/j.biomaterials.2003.10.030.

Abstract

The encapsulation of genetically modified cells represents a promising approach for the delivery of therapeutic proteins. The functionality of the device is dependent on the characteristics of the biomaterials, the procedures used in its confection and the adaptability of the encapsulated cells in the host. We report conditions leading to the development of calcifications on the polyvinyl alcohol (PVA) matrix introduced in hollow fiber devices for the encapsulation of primary human fibroblasts implanted in mice. The manufacturing procedures, batches of PVA matrix and cell lineages were assessed for their respective role in the development of the phenomenon. The results showed that the calcification is totally prevented by substituting phosphate-buffer saline with ultra-pure sterile water in the rinsing procedure of the matrix. Moreover, a positive correlation was found, when comparing two fibroblast cell lineages, between the level of lactate dehydrogenase (LDH) activity measured in the cells and the degree of calcium deposition. Higher LDH activity may decrease calcium depositions because it generates in the device a more acidic microenvironment inhibiting calcium precipitation. The present study defines optimized conditions for the encapsulation of primary human fibroblasts in order to avoid potentially detrimental calcifications and to allow long-term survival of encapsulated cells.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验