Schaid Daniel J
Department of Health Sciences Research, Mayo Clinic/Foundation, Rochester, Minnesota 55905, USA.
Genetics. 2004 Jan;166(1):505-12. doi: 10.1534/genetics.166.1.505.
Linkage disequilibrium, the nonrandom association of alleles from different loci, can provide valuable information on the structure of haplotypes in the human genome and is often the basis for evaluating the association of genomic variation with human traits among unrelated subjects. But, linkage phase of genetic markers measured on unrelated subjects is typically unknown, and so measurement of linkage disequilibrium, and testing whether it differs significantly from the null value of zero, requires statistical methods that can account for the ambiguity of unobserved haplotypes. A common method to test whether linkage disequilibrium differs significantly from zero is the likelihood-ratio statistic, which assumes Hardy-Weinberg equilibrium of the marker phenotype proportions. We show, by simulations, that this approach can be grossly biased, with either extremely conservative or liberal type I error rates. In contrast, we use simulations to show that a composite statistic, proposed by Weir and Cockerham, maintains the correct type I error rates, and, when comparisons are appropriate, has similar power as the likelihood-ratio statistic. We extend the composite statistic to allow for more than two alleles per locus, providing a global composite statistic, which is a strong competitor to the usual likelihood-ratio statistic.
连锁不平衡是指来自不同基因座的等位基因的非随机关联,它可以提供有关人类基因组单倍型结构的有价值信息,并且通常是评估无关个体中基因组变异与人类性状关联的基础。但是,在无关个体上测量的遗传标记的连锁相通常是未知的,因此,连锁不平衡的测量以及检验其是否与零的无效值有显著差异,需要能够考虑未观察到的单倍型的模糊性的统计方法。检验连锁不平衡是否与零有显著差异的一种常用方法是似然比统计量,它假定标记表型比例处于哈迪-温伯格平衡。我们通过模拟表明,这种方法可能存在严重偏差,具有极其保守或宽松的I型错误率。相比之下,我们通过模拟表明,由威尔和科克伦提出的复合统计量能保持正确的I型错误率,并且在适当比较时,其功效与似然比统计量相似。我们扩展了复合统计量,以允许每个基因座有两个以上的等位基因,从而提供一个全局复合统计量,它是通常的似然比统计量的有力竞争对手。