Fernando R L, Nettleton D, Southey B R, Dekkers J C M, Rothschild M F, Soller M
Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA.
Genetics. 2004 Jan;166(1):611-9. doi: 10.1534/genetics.166.1.611.
Genome scan mapping experiments involve multiple tests of significance. Thus, controlling the error rate in such experiments is important. Simple extension of classical concepts results in attempts to control the genomewise error rate (GWER), i.e., the probability of even a single false positive among all tests. This results in very stringent comparisonwise error rates (CWER) and, consequently, low experimental power. We here present an approach based on controlling the proportion of false positives (PFP) among all positive test results. The CWER needed to attain a desired PFP level does not depend on the correlation among the tests or on the number of tests as in other approaches. To estimate the PFP it is necessary to estimate the proportion of true null hypotheses. Here we show how this can be estimated directly from experimental results. The PFP approach is similar to the false discovery rate (FDR) and positive false discovery rate (pFDR) approaches. For a fixed CWER, we have estimated PFP, FDR, pFDR, and GWER through simulation under a variety of models to illustrate practical and philosophical similarities and differences among the methods.
基因组扫描定位实验涉及多次显著性检验。因此,在这类实验中控制错误率很重要。对经典概念的简单扩展导致人们试图控制全基因组错误率(GWER),即所有检验中哪怕出现一个假阳性的概率。这会导致非常严格的比较性错误率(CWER),从而降低实验效能。我们在此提出一种基于控制所有阳性检验结果中假阳性比例(PFP)的方法。达到期望的PFP水平所需的CWER不像其他方法那样依赖于检验之间的相关性或检验次数。为了估计PFP,有必要估计真零假设的比例。在此我们展示了如何直接从实验结果中估计这一比例。PFP方法类似于错误发现率(FDR)和阳性错误发现率(pFDR)方法。对于固定的CWER,我们通过在各种模型下进行模拟来估计PFP、FDR、pFDR和GWER,以说明这些方法在实际应用和理念上的异同。