Suppr超能文献

Metastatic burst fracture risk prediction using biomechanically based equations.

作者信息

Roth Sandra E, Mousavi Payam, Finkelstein Joel, Chow Edward, Kreder Hans, Whyne Cari M

机构信息

Orthopaedic Biomechanics Laboratory, Sunnybrook & Women's College Health Sciences Centre, Toronto, ON, Canada.

出版信息

Clin Orthop Relat Res. 2004 Feb(419):83-90. doi: 10.1097/00003086-200402000-00015.

Abstract

Clinical guidelines are a useful adjunct to select patients with spinal metastases for prophylactic intervention. The objective of this study is to determine the ability of biomechanically based models to accurately predict metastatic burst fracture risk. Ninety-two vertebrae with osteolytic spinal metastases were examined retrospectively. Vertebrae were categorized as burst fractured, wedge fractured, or intact and analyzed using three predictive models: vertebral bulge (maximum radial displacement under load), vertebral axial displacement (maximum axial displacement under load), and a volumetric estimate of tumor size. The load-bearing capacity parameter (tumor volume, bone mineral density, disc quality, pedicle involvement) was determined from computed tomography while the load-bearing requirement parameter (pressure load, loading rate) was determined using computed tomography and patient records (retrieved for 37 patients [52%]). Fracture prediction was optimized using the vertebral bulge model considering only load-bearing capacity with a specificity, sensitivity, and confidence interval of 1 to yield a clear threshold for burst fracture risk. Fracture prediction in the other two models, vertebral axial displacement considering only load-bearing capacity and tumor size, also was strong with receiver-operator curve values of 0.992 and 0.988, respectively. The predictive power of these models can provide useful clinical information for prophylactic decision-making.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验