Pike Brietta L, Yongkiettrakul Suganya, Tsai Ming-Daw, Heierhorst Jörg
St Vincent's Institute of Medical Research, Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria 3065, Australia.
Mol Cell Biol. 2004 Apr;24(7):2779-88. doi: 10.1128/MCB.24.7.2779-2788.2004.
The Rad53 kinase plays a central role in yeast DNA damage checkpoints. Rad53 contains two FHA phosphothreonine-binding domains that are required for Rad53 activation and possibly downstream signaling. Here we show that the N-terminal Rad53 FHA1 domain interacts with the RNA recognition motif, coiled-coil, and SQ/TQ cluster domain-containing protein Mdt1 (YBl051C). The interaction of Rad53 and Mdt1 depends on the structural integrity of the FHA1 phosphothreonine-binding site as well as threonine-305 of Mdt1. Mdt1 is constitutively threonine phosphorylated and hyperphosphorylated in response to DNA damage in vivo. DNA damage-dependent Mdt1 hyperphosphorylation depends on the Mec1 and Tel1 checkpoint kinases, and Mec1 can directly phosphorylate a recombinant Mdt1 SQ/TQ domain fragment. MDT1 overexpression is synthetically lethal with a rad53 deletion, whereas mdt1 deletion partially suppresses the DNA damage hypersensitivity of checkpoint-compromised strains and generally improves DNA damage tolerance. In the absence of DNA damage, mdt1 deletion leads to delayed anaphase completion, with an elongated cell morphology reminiscent of that of G(2)/M cell cycle mutants. mdt1-dependent and DNA damage-dependent cell cycle delays are not additive, suggesting that they act in the same pathway. The data indicate that Mdt1 is involved in normal G(2)/M cell cycle progression and is a novel target of checkpoint-dependent cell cycle arrest pathways.
Rad53激酶在酵母DNA损伤检查点中起核心作用。Rad53含有两个FHA磷酸苏氨酸结合结构域,这是Rad53激活以及可能的下游信号传导所必需的。在这里,我们表明Rad53的N端FHA1结构域与含有RNA识别基序、卷曲螺旋和SQ/TQ簇结构域的蛋白Mdt1(YBl051C)相互作用。Rad53与Mdt1的相互作用取决于FHA1磷酸苏氨酸结合位点的结构完整性以及Mdt1的苏氨酸305。Mdt1在体内组成性地被苏氨酸磷酸化,并在DNA损伤时发生超磷酸化。DNA损伤依赖性的Mdt1超磷酸化取决于Mec1和Tel1检查点激酶,并且Mec1可以直接磷酸化重组的Mdt1 SQ/TQ结构域片段。MDT1过表达与rad53缺失具有合成致死性,而mdt1缺失部分抑制了检查点受损菌株对DNA损伤的超敏感性,并总体上提高了DNA损伤耐受性。在没有DNA损伤的情况下,mdt1缺失导致后期完成延迟,细胞形态延长,类似于G(2)/M细胞周期突变体。mdt1依赖性和DNA损伤依赖性的细胞周期延迟不是相加的,表明它们作用于同一条途径。数据表明Mdt1参与正常的G(2)/M细胞周期进程,并且是检查点依赖性细胞周期停滞途径的一个新靶点。