Suppr超能文献

磷酸化作用控制了Ikaros负向调节G1期至S期转换的能力。

Phosphorylation controls Ikaros's ability to negatively regulate the G(1)-S transition.

作者信息

Gómez-del Arco Pablo, Maki Kazushige, Georgopoulos Katia

机构信息

Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA.

出版信息

Mol Cell Biol. 2004 Apr;24(7):2797-807. doi: 10.1128/MCB.24.7.2797-2807.2004.

Abstract

Ikaros is a key regulator of lymphocyte proliferative responses. Inactivating mutations in Ikaros cause antigen-mediated lymphocyte hyperproliferation and the rapid development of leukemia and lymphoma. Here we show that Ikaros's ability to negatively regulate the G(1)-S transition can be modulated by phosphorylation of a serine/threonine-rich conserved region (p1) in exon 8. Ikaros phosphorylation in p1 is induced during the G(1)-S transition. Mutations that prevent phosphorylation in p1 increase Ikaros's ability to impede cell cycle progression and its affinity for DNA. Casein kinase II, whose increased activity in lymphocytes leads to transformation, is a key player in Ikaros p1 phosphorylation. We thus propose that Ikaros's activity as a regulator of the G(1)-S transition is controlled by phosphorylation in response to signaling events that down-modulate its DNA binding activity.

摘要

Ikaro是淋巴细胞增殖反应的关键调节因子。Ikaro的失活突变会导致抗原介导的淋巴细胞过度增殖以及白血病和淋巴瘤的快速发展。在此我们表明,Ikaro负向调节G1期至S期转换的能力可通过外显子8中富含丝氨酸/苏氨酸的保守区域(p1)的磷酸化来调节。p1中的Ikaro磷酸化在G1期至S期转换期间被诱导。阻止p1磷酸化的突变增加了Ikaro阻碍细胞周期进程的能力及其与DNA的亲和力。酪蛋白激酶II在淋巴细胞中的活性增加会导致细胞转化,它是Ikaro p1磷酸化的关键参与者。因此我们提出,作为G1期至S期转换调节因子的Ikaro活性是通过磷酸化来控制的,以响应下调其DNA结合活性的信号事件。

相似文献

1
Phosphorylation controls Ikaros's ability to negatively regulate the G(1)-S transition.
Mol Cell Biol. 2004 Apr;24(7):2797-807. doi: 10.1128/MCB.24.7.2797-2807.2004.
3
Site-Specific Phosphorylation of Ikaros Induced by Low-Dose Ionizing Radiation Regulates Cell Cycle Progression of B Lymphoblast Through CK2 and AKT Activation.
Int J Radiat Oncol Biol Phys. 2016 Apr 1;94(5):1207-18. doi: 10.1016/j.ijrobp.2016.01.008. Epub 2016 Jan 14.
4
Restoring Ikaros's wings to solve a leukemia maze.
Blood. 2015 Oct 8;126(15):1735-6. doi: 10.1182/blood-2015-08-662544.
5
Ikaros induces quiescence and T-cell differentiation in a leukemia cell line.
Mol Cell Biol. 2005 Mar;25(5):1645-54. doi: 10.1128/MCB.25.5.1645-1654.2005.
7
Cell cycle-specific function of Ikaros in human leukemia.
Pediatr Blood Cancer. 2012 Jul 15;59(1):69-76. doi: 10.1002/pbc.23406. Epub 2011 Nov 21.
10
Regulation of cellular proliferation in acute lymphoblastic leukemia by Casein Kinase II (CK2) and Ikaros.
Adv Biol Regul. 2017 Jan;63:71-80. doi: 10.1016/j.jbior.2016.09.003. Epub 2016 Sep 18.

引用本文的文献

2
IKAROS Family Transcription Factors in Lymphocyte Differentiation and Function.
Adv Exp Med Biol. 2024;1459:33-52. doi: 10.1007/978-3-031-62731-6_2.
3
Alterations and Therapeutic Targeting in B-Cell Acute Lymphoblastic Leukemia.
Biomedicines. 2024 Jan 1;12(1):89. doi: 10.3390/biomedicines12010089.
4
IKAROS: from chromatin organization to transcriptional elongation control.
Cell Death Differ. 2025 Jan;32(1):37-55. doi: 10.1038/s41418-023-01212-2. Epub 2023 Aug 24.
5
IKAROS in Acute Leukemia: A Positive Influencer or a Mean Hater?
Int J Mol Sci. 2023 Feb 7;24(4):3282. doi: 10.3390/ijms24043282.
6
Ikaros Proteins in Tumor: Current Perspectives and New Developments.
Front Mol Biosci. 2021 Dec 7;8:788440. doi: 10.3389/fmolb.2021.788440. eCollection 2021.
8
The Current Genomic and Molecular Landscape of Philadelphia-like Acute Lymphoblastic Leukemia.
Int J Mol Sci. 2020 Mar 22;21(6):2193. doi: 10.3390/ijms21062193.
9
Regulation of Small GTPase Rab20 by Ikaros in B-Cell Acute Lymphoblastic Leukemia.
Int J Mol Sci. 2020 Mar 3;21(5):1718. doi: 10.3390/ijms21051718.
10
The prognostic and predictive value of IKZF1 and IKZF3 expression in T-cells in patients with multiple myeloma.
Oncoimmunology. 2018 Aug 1;7(10):e1486356. doi: 10.1080/2162402X.2018.1486356. eCollection 2018.

本文引用的文献

1
Thymopoiesis independent of common lymphoid progenitors.
Nat Immunol. 2003 Feb;4(2):168-74. doi: 10.1038/ni878. Epub 2003 Jan 6.
2
The CD8alpha gene locus is regulated by the Ikaros family of proteins.
Mol Cell. 2002 Dec;10(6):1403-15. doi: 10.1016/s1097-2765(02)00711-6.
3
A common mechanism for mitotic inactivation of C2H2 zinc finger DNA-binding domains.
Genes Dev. 2002 Dec 1;16(23):2985-90. doi: 10.1101/gad.1040502.
4
The retinoblastoma tumour suppressor in development and cancer.
Nat Rev Cancer. 2002 Dec;2(12):910-7. doi: 10.1038/nrc950.
5
Protein kinase CK2: structure, regulation and role in cellular decisions of life and death.
Biochem J. 2003 Jan 1;369(Pt 1):1-15. doi: 10.1042/BJ20021469.
6
Functional interaction of protein kinase CK2 and c-Myc in lymphomagenesis.
Oncogene. 2002 Aug 8;21(34):5280-8. doi: 10.1038/sj.onc.1205640.
7
Cell cycle arrest and repression of cyclin D1 transcription by INI1/hSNF5.
Mol Cell Biol. 2002 Aug;22(16):5975-88. doi: 10.1128/MCB.22.16.5975-5988.2002.
8
Haematopoietic cell-fate decisions, chromatin regulation and ikaros.
Nat Rev Immunol. 2002 Mar;2(3):162-74. doi: 10.1038/nri747.
9
Unconventional potentiation of gene expression by Ikaros.
J Biol Chem. 2002 Apr 12;277(15):13007-15. doi: 10.1074/jbc.M111371200. Epub 2002 Jan 17.
10
Regulation of G(1) cell-cycle progression by oncogenes and tumor suppressor genes.
Curr Opin Genet Dev. 2002 Feb;12(1):47-52. doi: 10.1016/s0959-437x(01)00263-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验