Tuckwell Henry C, Wan Frederic Y M
Department of Mathematics, University of California, Irvine, CA 92697, USA.
Biosystems. 2004 Mar;73(3):157-61. doi: 10.1016/j.biosystems.2003.11.004.
We consider simple mathematical models for the early population dynamics of the human immunodefficiency type 1 virus (HIV-1). Although these systems of differential equations may be solved by numerical methods, few general theoretical results are available due to nonlinearities. We analyze a model whose components are plasma densities of uninfected CD4+ T-cells and infected cells (assumed in this model to be proportional to virion density). In addition to analyzing the nature of the equilibrium points, we show that there are no periodic or limit-cycle solutions. Depending on the values of the parameters, solutions either tend without oscillation to an equilibrium point with zero virion density or to an equilibrium point in which there are a nonzero number of virions. In the latter case the approach to equilibrium may be through damped oscillations or without oscillation.
我们考虑了用于人类免疫缺陷1型病毒(HIV-1)早期种群动态的简单数学模型。尽管这些微分方程组可以通过数值方法求解,但由于非线性因素,很少有一般性的理论结果。我们分析了一个模型,其组成部分是未感染的CD4+ T细胞和被感染细胞的血浆密度(在该模型中假设与病毒体密度成正比)。除了分析平衡点的性质外,我们还表明不存在周期解或极限环解。根据参数值,解要么无振荡地趋向于病毒体密度为零的平衡点,要么趋向于存在非零数量病毒体的平衡点。在后一种情况下,趋向于平衡点的过程可能是通过阻尼振荡或无振荡实现的。