Suppr超能文献

Machine learning based pattern recognition applied to microarray data.

作者信息

Lavine Barry K, Davidson Charles E, Rayens William S

机构信息

Department of Chemistry, Clarkson University, Potsdam, NY 13699-5810, USA.

出版信息

Comb Chem High Throughput Screen. 2004 Mar;7(2):115-31. doi: 10.2174/138620704773120801.

Abstract

Microarrays have allowed the expression level of thousands of genes or proteins to be measured simultaneously. Data sets generated by these arrays consist of a small number of observations (e.g., 20-100 samples) on a very large number of variables (e.g., 10,000 genes or proteins). The observations in these data sets often have other attributes associated with them such as a class label denoting the pathology of the subject. Finding the genes or proteins that are correlated to these attributes is often a difficult task since most of the variables do not contain information about the pathology and as such can mask the identity of the relevant features. We describe a genetic algorithm (GA) that employs both supervised and unsupervised learning to mine gene expression and proteomic data. The pattern recognition GA selects features that increase clustering, while simultaneously searching for features that optimize the separation of the classes in a plot of the two or three largest principal components of the data. Because the largest principal components capture the bulk of the variance in the data, the features chosen by the GA contain information primarily about differences between classes in the data set. The principal component analysis routine embedded in the fitness function of the GA acts as an information filter, significantly reducing the size of the search space since it restricts the search to feature sets whose principal component plots show clustering on the basis of class. The algorithm integrates aspects of artificial intelligence and evolutionary computations to yield a smart one pass procedure for feature selection, clustering, classification, and prediction.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验