Suppr超能文献

GABAB receptor stimulation decreases amphetamine-induced behavior and neuropeptide gene expression in the striatum.

作者信息

Zhou Wenxia, Mailloux Adam W, Jung Bruce J, Edmunds Hayward S, McGinty Jacqueline F

机构信息

Department of Physiology and Neuroscience, Medical University of South Carolina, 173 Ashley Avenue, BSB 403, Charleston, SC 29425, USA.

出版信息

Brain Res. 2004 Apr 9;1004(1-2):18-28. doi: 10.1016/j.brainres.2003.11.077.

Abstract

The purpose of this study was to investigate whether GABA(B) receptor activation blocks acute amphetamine-induced behavioral activity, dopamine release, and neuropeptide mRNA expression in the striatum. Systemic administration of R-(+)-baclofen (1.25 mg/kg, i.p.) did not alter total distance traveled or vertical rearing induced by amphetamine (2.5 mg/kg, i.p.). At 2.5 mg/kg, baclofen did not alter spontaneous motor activity or total distance traveled, but completely blocked vertical rearing induced by amphetamine. At 5.0 mg/kg, baclofen completely blocked both total distance traveled and vertical rearing induced by amphetamine. Quantitative in situ hybridization histochemistry revealed that baclofen (2.5 mg/kg, i.p.) decreased the ability of amphetamine to increase preprodynorphin (PPD), preprotachykinin (PPT), preproenkephalin (PPE), and secretogranin II (SGII) mRNA levels in the striatum without altering the basal levels of these signals. Baclofen also blocked the amphetamine-induced rise in SGII mRNA in the core and shell of the nucleus accumbens and cingulate cortex. In a separate experiment, systemic baclofen (2.5 mg/kg) decreased the amphetamine-induced increase in dialysate dopamine levels in the striatum. These results suggest that reduced striatal dopamine release contributes to the ability of GABA(B) receptor activation to decrease acute amphetamine-induced behavioral activity and striatal neuropeptide gene expression.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验