Suppr超能文献

Increased apoptotic cell death in sporadic and genetic Alzheimer's disease.

作者信息

Eckert Anne, Marques Celio A, Keil Uta, Schüssel Katrin, Müller Walter E

机构信息

Department of Pharmacology, Biocenter, University of Frankfurt, 60439 Frankfurt am Main, Germany.

出版信息

Ann N Y Acad Sci. 2003 Dec;1010:604-9. doi: 10.1196/annals.1299.113.

Abstract

Mounting evidence indicates increased susceptibility to cell death and increased oxidative damage as common features in neurons from sporadic Alzheimer's disease (AD) patients but also from familial AD (FAD) cases. Autosomal dominant forms of FAD are caused by mutations of the amyloid precursor protein (APP) gene and by mutations of the genes encoding for presenilin 1 or presenilin 2 (PS1/2). We investigated the effect of the Swedish APP double mutation (APPsw) on oxidative stress-induced cell death mechanisms in PC12 cells. This mutation results in from three- to sixfold increased beta-amyloid (Abeta) production compared with wild-type APP (APPwt). Because APPsw cells secrete low Abeta levels similar to the situation in FAD brains, our cell model represents a very suitable approach to elucidate the AD-specific cell death pathways under more likely physiological conditions. We found that APPsw-bearing cells show decreased mitochondrial membrane potential after exposure to hydrogen peroxide. In addition, activity of the executor caspase 3 after treatment with hydrogen peroxide was elevated in APPsw cells, which seems to be the result of an enhanced activation of both intrinsic and extrinsic apoptosis pathways. Our findings provide evidence that the massive neurodegeneration in early age of FAD patients could be a consequence of an increased vulnerability of neurons by mitochondrial abnormalities resulting in activation of different apoptotic pathways as a consequence to elevated oxidative stress levels. Finally, we propose a hypothetical sequence of the pathogenic steps linking sporadic AD, FAD, Abeta production, mitochondrial dysfunction with caspase pathway, and neuronal loss.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验