Suppr超能文献

用于院外急诊医学时间记录的自动语音识别——一种实验方法。

Automated speech recognition for time recording in out-of-hospital emergency medicine-an experimental approach.

作者信息

Gröschel J, Philipp F, Skonetzki St, Genzwürker H, Wetter Th, Ellinger K

机构信息

Institut für Anästhesiologie und Operative Intensivmedizin, Universitätsklinikum Mannheim, Fakultät für Klinische Medizin Mannheim, Universität Heidelberg, 68135 Mannheim, Germany.

出版信息

Resuscitation. 2004 Feb;60(2):205-12. doi: 10.1016/j.resuscitation.2003.10.006.

Abstract

Precise documentation of medical treatment in emergency medical missions and for resuscitation is essential from a medical, legal and quality assurance point of view [Anästhesiologie und Intensivmedizin, 41 (2000) 737]. All conventional methods of time recording are either too inaccurate or elaborate for routine application. Automated speech recognition may offer a solution. A special erase programme for the documentation of all time events was developed. Standard speech recognition software (IBM ViaVoice 7.0) was adapted and installed on two different computer systems. One was a stationary PC (500MHz Pentium III, 128MB RAM, Soundblaster PCI 128 Soundcard, Win NT 4.0), the other was a mobile pen-PC that had already proven its value during emergency missions [Der Notarzt 16, p. 177] (Fujitsu Stylistic 2300, 230Mhz MMX Processor, 160MB RAM, embedded soundcard ESS 1879 chipset, Win98 2nd ed.). On both computers two different microphones were tested. One was a standard headset that came with the recognition software, the other was a small microphone (Lavalier-Kondensatormikrofon EM 116 from Vivanco), that could be attached to the operators collar. Seven women and 15 men spoke a text with 29 phrases to be recognised. Two emergency physicians tested the system in a simulated emergency setting using the collar microphone and the pen-PC with an analogue wireless connection. Overall recognition was best for the PC with a headset (89%) followed by the pen-PC with a headset (85%), the PC with a microphone (84%) and the pen-PC with a microphone (80%). Nevertheless, the difference was not statistically significant. Recognition became significantly worse (89.5% versus 82.3%, P<0.0001 ) when numbers had to be recognised. The gender of speaker and the number of words in a sentence had no influence. Average recognition in the simulated emergency setting was 75%. At no time did false recognition appear. Time recording with automated speech recognition seems to be possible in emergency medical missions. Although results show an average recognition of only 75%, it is possible that missing elements may be reconstructed more precisely. Future technology should integrate a secure wireless connection between microphone and mobile computer. The system could then prove its value for real out-of-hospital emergencies.

摘要

从医学、法律和质量保证的角度来看,在紧急医疗任务和复苏过程中对医疗治疗进行精确记录至关重要[《麻醉学与重症医学》,41(2000)737]。所有传统的时间记录方法对于常规应用来说要么不够准确,要么过于繁琐。自动语音识别可能提供一种解决方案。开发了一个用于记录所有时间事件的特殊擦除程序。标准语音识别软件(IBM ViaVoice 7.0)被改编并安装在两个不同的计算机系统上。一个是台式电脑(500MHz奔腾III,128MB随机存取存储器,声霸卡PCI 128声卡,Windows NT 4.0),另一个是移动笔式电脑,它在紧急任务中已经证明了其价值[《急诊医生》16,第177页](富士通Stylistic 2300,230Mhz MMX处理器,160MB随机存取存储器,嵌入式声卡ESS 1879芯片组,Windows 98第二版)。在两台计算机上测试了两种不同的麦克风。一个是随识别软件附带的标准头戴式耳机,另一个是小型麦克风(来自Vivanco的领夹式电容麦克风EM 116),可以连接到操作员的衣领上。7名女性和15名男性朗读了一段包含29个待识别短语的文本。两名急诊医生在模拟紧急情况下使用衣领麦克风和带有模拟无线连接的笔式电脑对系统进行了测试。总体识别率最高的是使用头戴式耳机的台式电脑(89%),其次是使用头戴式耳机的笔式电脑(85%)、使用麦克风的台式电脑(84%)和使用麦克风的笔式电脑(80%)。然而,差异没有统计学意义。当必须识别数字时,识别率显著下降(89.5%对82.3%,P<0.0001)。说话者的性别和句子中的单词数量没有影响。模拟紧急情况下的平均识别率为75%。从未出现错误识别。在紧急医疗任务中,使用自动语音识别进行时间记录似乎是可行的。尽管结果显示平均识别率仅为75%,但缺失的元素可能会被更精确地重建。未来的技术应该集成麦克风和移动计算机之间的安全无线连接。然后,该系统可以证明其在实际院外紧急情况中的价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验