Lee B H, Stelly T C, Colucci W J, Garcia J G, Gandour R D, Quinn D M
Department of Chemistry, University of Iowa, Iowa City 52242.
Chem Res Toxicol. 1992 May-Jun;5(3):411-8. doi: 10.1021/tx00027a015.
2-Substituted-2-hydroxy-4,4-dimethylmorpholiniums (hemicholiniums) inhibit acetylcholinesterase (EC 3.1.1.7)-catalyzed hydrolysis of acetylthiocholine (ATCh). The 4-substituted arenes [NH2, NHC(O)CH3, Cl, CN, and NO2] have values of inhibition constants (Ki) that range from 220 to 3690 microM, which correlate with Hammett sigma, rho approximately 0.8. The alkyl compounds, hydrogen, methyl, tert-butyl, and trifluoromethyl, have values of Ki of 550, 560, 1200, and 1200 microM, respectively. These values compare favorably with Ki = 960 microM for choline. The conformation of AChE-bound choline must be gauche to support our suggestion that hemicholiniums are conformationally constrained analogues of choline. (3-Hydroxyphenyl)trimethylammonium (5) inhibits most strongly, Ki = 0.21 microM, of the compounds examined in this study. The solvent isotope effect (H2OKi/D2OKi = 0.83 +/- 0.04) suggests that inhibition by 5 involves hydrogen bonding. The binding by AChE of the hemicholiniums of various sizes and the strong binding of 5 support an earlier proposal [Schowen, K. B., Smissman, E. E., and Stephen, W. F., Jr. (1975) J. Med. Chem. 18, 292-300] that the active site of AChE has ample space for rotation about the C-C bond in choline. Compound 5, which has one more carbon between the hydroxy and trimethylammonium than does choline, inhibits much more potently than either choline or the hemicholiniums. Compound 5 provides a correct spacer to span the trimethylammonium recognition site and the esteratic site of AChE. This aromatic spacer interacts favorably with the hydrophobic active site, and the phenolic hydroxyl probably hydrogen bonds to the histidine in the esteratic site. Choline in any conformation and the hemicholiniums are too short to make a strong hydrogen bond.
2-取代-2-羟基-4,4-二甲基吗啉鎓(半胆碱)可抑制乙酰胆碱酯酶(EC 3.1.1.7)催化的乙酰硫代胆碱(ATCh)水解。4-取代芳烃[NH₂、NHC(O)CH₃、Cl、CN和NO₂]的抑制常数(Ki)值在220至3690微摩尔范围内,与哈米特σ值相关,ρ约为0.8。烷基化合物,氢、甲基、叔丁基和三氟甲基的Ki值分别为550、560、1200和1200微摩尔。这些值与胆碱的Ki = 960微摩尔相比具有优势。与乙酰胆碱酯酶结合的胆碱构象必须为gauche构象,以支持我们的观点,即半胆碱是胆碱的构象受限类似物。(3-羟基苯基)三甲基铵(5)在本研究中检测的化合物中抑制作用最强,Ki = 0.21微摩尔。溶剂同位素效应(H₂O Ki/D₂O Ki = 0.83 ± 0.04)表明5的抑制作用涉及氢键。各种大小的半胆碱与乙酰胆碱酯酶的结合以及5的强结合支持了早期的提议[Schowen, K. B., Smissman, E. E., and Stephen, W. F., Jr. (1975) J. Med. Chem. 18, 292 - 300],即乙酰胆碱酯酶的活性位点有足够空间围绕胆碱中的C-C键旋转。化合物5在羟基和三甲基铵之间比胆碱多一个碳原子,其抑制作用比胆碱或半胆碱都要强得多。化合物5提供了一个合适的间隔基团,以跨越三甲基铵识别位点和乙酰胆碱酯酶的酯解位点。这个芳香间隔基团与疏水活性位点有良好的相互作用,酚羟基可能与酯解位点中的组氨酸形成氢键。任何构象的胆碱和半胆碱都太短,无法形成强氢键。