Suppr超能文献

并行平台上高通量生物数据处理的案例研究。

A case study of high-throughput biological data processing on parallel platforms.

作者信息

Pekurovsky D, Shindyalov I N, Bourne P E

机构信息

San Diego Supercomputer Center, University of California San Diego, La Jolla 92093, USA.

出版信息

Bioinformatics. 2004 Aug 12;20(12):1940-7. doi: 10.1093/bioinformatics/bth184. Epub 2004 Mar 25.

Abstract

MOTIVATION

Analysis of large biological data sets using a variety of parallel processor computer architectures is a common task in bioinformatics. The efficiency of the analysis can be significantly improved by properly handling redundancy present in these data combined with taking advantage of the unique features of these compute architectures.

RESULTS

We describe a generalized approach to this analysis, but present specific results using the program CEPAR, an efficient implementation of the Combinatorial Extension algorithm in a massively parallel (PAR) mode for finding pairwise protein structure similarities and aligning protein structures from the Protein Data Bank. CEPAR design and implementation are described and results provided for the efficiency of the algorithm when run on a large number of processors.

AVAILABILITY

Source code is available by contacting one of the authors.

摘要

动机

使用各种并行处理器计算机架构分析大型生物数据集是生物信息学中的常见任务。通过妥善处理这些数据中存在的冗余,并利用这些计算架构的独特特性,可显著提高分析效率。

结果

我们描述了这种分析的通用方法,但使用程序CEPAR展示了具体结果。CEPAR是组合扩展算法在大规模并行(PAR)模式下的高效实现,用于从蛋白质数据库中查找成对蛋白质结构相似性并比对蛋白质结构。文中描述了CEPAR的设计与实现,并给出了该算法在大量处理器上运行时的效率结果。

可用性

可通过联系作者之一获取源代码。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验