Suppr超能文献

光谱技术在铀(VI)/蒙脱石相互作用建模中的应用。

Use of spectroscopic techniques for uranium(VI)/montmorillonite interaction modeling.

作者信息

Kowal-Fouchard A, Drot R, Simoni E, Ehrhardt J J

机构信息

Institut de Physique Nucléaire, Groupe de Radiochimie, Université Paris XI, 91406 Orsay, France.

出版信息

Environ Sci Technol. 2004 Mar 1;38(5):1399-407. doi: 10.1021/es0348344.

Abstract

To experimentally identify both clay sorption sites and sorption equilibria and to understand the retention mechanisms at a molecular level, we have characterized the structure of hexavalent uranium surface complexes resulting from the interaction between the uranyl ions and the surface retention groups of a montmorillonite clay. We have performed laser-induced fluorescence spectroscopy (LIFS) and X-ray photoelectron spectroscopy (XPS) on uranyl ion loaded montmorillonite. These structural results were then compared to those obtained from the study of uranyl ions sorbed onto an alumina and also from U(VI) sorbed on an amorphous silica. This experimental approach allowed for a clear determination of the reactive surface sites of montmorillonite for U(VI) sorption. The lifetime values and the U4f XPS spectra of uranium(VI) sorbed on montmorillonite have shown that this ion is sorbed on both exchange and edge sites. The comparison of U(VI)/clay and U(VI)/oxide systems has determined that the interaction between uranyl ions and montmorillonite edge sites occurs via both [triple bond]AlOH and [triple bond]SiOH surface groups and involves three distinct surface complexes. The surface complexation modeling of the U(VI)/montmorillonite sorption edges was determined using the constant capacitance model and the above experimental constraints. The following equilibria were found to account for the uranyl sorption mechanisms onto montmorillonite for metal concentrations ranged from 10(-6) to 10(-3) M and two ionic strengths (0.1 and 0.5 M): 2[triple bond]XNa + UO2(2+) <==> ([triple bond]X)2UO2 + 2Na+, log K0(exch) = 3.0; [triple bond]Al(OH)2 + UO2(2+) <==> [triple bond]Al(OH)2UO2(2+), log K0(Al) = 14.9; [triple bond]Si(OH)2 + UO2(2+) <==> [triple bond]SiO2UO2 + 2H+, log K0(Si1) = -3.8; and [triple bond]Si(OH)2 + 3UO2(2+) + 5H2O <==> [triple bond]SiO2(UO2)3(OH)5- + 7H+, log K0(Si2) = -20.0.

摘要

为了通过实验确定黏土吸附位点和吸附平衡,并在分子水平上理解保留机制,我们对六价铀表面络合物的结构进行了表征,该络合物是由铀酰离子与蒙脱石黏土的表面保留基团之间的相互作用产生的。我们对负载铀酰离子的蒙脱石进行了激光诱导荧光光谱(LIFS)和X射线光电子能谱(XPS)分析。然后将这些结构结果与从吸附在氧化铝上的铀酰离子以及吸附在无定形二氧化硅上的U(VI)的研究中获得的结果进行比较。这种实验方法能够清晰地确定蒙脱石对U(VI)吸附的活性表面位点。吸附在蒙脱石上的铀(VI)的寿命值和U4f XPS光谱表明,该离子吸附在交换位点和边缘位点上。U(VI)/黏土和U(VI)/氧化物体系的比较确定,铀酰离子与蒙脱石边缘位点之间的相互作用通过[三键]AlOH和[三键]SiOH表面基团发生,并且涉及三种不同的表面络合物。使用恒电容模型和上述实验约束条件确定了U(VI)/蒙脱石吸附边缘的表面络合模型。发现以下平衡可以解释在金属浓度范围为10(-6)至10(-3) M以及两种离子强度(0.1和0.5 M)下铀酰在蒙脱石上的吸附机制:2[三键]XNa + UO2(2+) <==> ([三键]X)2UO2 + 2Na+,log K0(exch) = 3.0;[三键]Al(OH)2 + UO2(2+) <==> [三键]Al(OH)2UO2(2+),log K0(Al) = 14.9;[三键]Si(OH)2 + UO2(2+) <==> [三键]SiO2UO2 + 2H+,log K0(Si1) = -3.8;以及[三键]Si(OH)2 + 3UO2(2+) + 5H2O <==> [三键]SiO2(UO2)3(OH)5- + 7H+,log K0(Si2) = -20.0。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验