Suppr超能文献

NFY interacts with the promoter region of two genes involved in the rat peroxisomal fatty acid beta-oxidation: the multifunctional protein type 1 and the 3-ketoacyl-CoA B thiolase.

作者信息

Desaint Stéphane, Hansmannel Franck, Clémencet Marie-Claude, Le Jossic-Corcos Catherine, Nicolas-Frances Valérie, Latruffe Norbert, Cherkaoui-Malki Mustapha

机构信息

Laboratoire de Biologie Moléculaire et Cellulaire (GDR-CNRS n. 2583), Faculté des Sciences Gabriel, Université de Bourgogne, 6 boulevard Gabriel, 21000 Dijon, France.

出版信息

Lipids Health Dis. 2004 Mar 26;3:4. doi: 10.1186/1476-511X-3-4.

Abstract

BACKGROUND

Beta-oxidation of long and very long chain fatty acyl-CoA derivatives occurs in peroxisomes, which are ubiquitous subcellular organelles of eukaryotic cells. This pathway releases acetyl-CoA as precursor for several key molecules such as cholesterol. Numerous enzymes participating to cholesterol and fatty acids biosynthesis pathways are co-localized in peroxisomes and some of their encoding genes are known as targets of the NFY transcriptional regulator. However, until now no interaction between NFY transcription factor and genes encoding peroxisomal beta-oxidation has been reported.

RESULTS

This work studied the interactions between NFY factor with the rat gene promoters of two enzymes of the fatty acid beta-oxidation, MFP-1 (multifunctional protein type 1) and ThB (thiolase B) and their involvement in the cholesterol dependent-gene regulation. Binding of this nuclear factor to the ATTGG motif of the MFP-1 and of the ThB promoters was demonstrated by EMSA (Electrophoretic Mobility Shift Assay) and super shift assay. In contrast, in spite of the presence of putative Sp1 binding sites in these promoters, competitive EMSA did not reveal any binding. The promoter-dependent luciferase gene expression was downregulated by cholesterol in MFP-1 and ThB promoters harbouring constructs.

CONCLUSIONS

This work describes for the first time a NFY interaction with promoter sequences of the peroxisomal beta-oxidation encoding genes. It suggests that cholesterol would negatively regulate the expression of genes involved in beta-oxidation, which generates the initial precursor for its own biosynthesis, via at least the NFY transcription factor.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eca2/400753/f9cda7ed6588/1476-511X-3-4-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验