Aubry Alexandra, Pan Xiao-Su, Fisher L Mark, Jarlier Vincent, Cambau Emmanuelle
Laboratoire de Bactériologie, Faculté de Médecine Pitié-Salpêtrière, Université Pierre et Marie Curie, Paris, France.
Antimicrob Agents Chemother. 2004 Apr;48(4):1281-8. doi: 10.1128/AAC.48.4.1281-1288.2004.
Genome studies suggest that DNA gyrase is the sole type II topoisomerase and likely the unique target of quinolones in Mycobacterium tuberculosis. Despite the emerging importance of quinolones in the treatment of mycobacterial disease, the slow growth and high pathogenicity of M. tuberculosis have precluded direct purification of its gyrase and detailed analysis of quinolone action. To address these issues, we separately overexpressed the M. tuberculosis DNA gyrase GyrA and GyrB subunits as His-tagged proteins in Escherichia coli from pET plasmids carrying gyrA and gyrB genes. The soluble 97-kDa GyrA and 72-kDa GyrB subunits were purified by nickel chelate chromatography and shown to reconstitute an ATP-dependent DNA supercoiling activity. The drug concentration that inhibited DNA supercoiling by 50% (IC(50)) was measured for 22 different quinolones, and values ranged from 2 to 3 microg/ml (sparfloxacin, sitafloxacin, clinafloxacin, and gatifloxacin) to >1,000 microg/ml (pipemidic acid and nalidixic acid). By comparison, MICs measured against M. tuberculosis ranged from 0.12 microg/ml (for gatifloxacin) to 128 microg/ml (both pipemidic acid and nalidixic acid) and correlated well with the gyrase IC(50)s (R(2) = 0.9). Quinolones promoted gyrase-mediated cleavage of plasmid pBR322 DNA due to stabilization of the cleavage complex, which is thought to be the lethal lesion. Surprisingly, the measured concentrations of drug inducing 50% plasmid linearization correlated less well with the MICs (R(2) = 0.7). These findings suggest that the DNA supercoiling inhibition assay may be a useful screening test in identifying quinolones with promising activity against M. tuberculosis. The quinolone structure-activity relationship demonstrated here shows that C-8, the C-7 ring, the C-6 fluorine, and the N-1 cyclopropyl substituents are desirable structural features in targeting M. tuberculosis gyrase.
基因组研究表明,DNA回旋酶是结核分枝杆菌中唯一的II型拓扑异构酶,可能也是喹诺酮类药物的唯一靶点。尽管喹诺酮类药物在治疗分枝杆菌疾病方面的重要性日益凸显,但结核分枝杆菌生长缓慢且致病性高,这使得直接纯化其回旋酶并详细分析喹诺酮类药物的作用变得困难。为了解决这些问题,我们分别从携带gyrA和gyrB基因的pET质粒中,在大肠杆菌中过表达了带有His标签的结核分枝杆菌DNA回旋酶GyrA和GyrB亚基。通过镍螯合层析纯化出可溶性的97 kDa GyrA和72 kDa GyrB亚基,并证明它们能重建依赖ATP的DNA超螺旋活性。测定了22种不同喹诺酮类药物抑制DNA超螺旋50%(IC50)的药物浓度,其值范围从2至3μg/ml(司帕沙星、西他沙星、克林沙星和加替沙星)到>1000μg/ml(吡哌酸和萘啶酸)。相比之下,针对结核分枝杆菌测定的MIC范围从0.12μg/ml(加替沙星)到128μg/ml(吡哌酸和萘啶酸),并且与回旋酶IC50值相关性良好(R2 = 0.9)。喹诺酮类药物由于切割复合物的稳定而促进回旋酶介导的质粒pBR322 DNA切割,这被认为是致死性损伤。令人惊讶的是,诱导50%质粒线性化的测定药物浓度与MIC的相关性较差(R2 = 0.7)。这些发现表明,DNA超螺旋抑制试验可能是一种有用的筛选试验,用于鉴定对结核分枝杆菌具有良好活性的喹诺酮类药物。此处展示的喹诺酮类药物构效关系表明,C-8、C-7环、C-6氟和N-1环丙基取代基是靶向结核分枝杆菌回旋酶的理想结构特征。