Suppr超能文献

黑色素瘤中的基因芯片表达谱分析揭示了一种BRAF突变特征。

Microarray expression profiling in melanoma reveals a BRAF mutation signature.

作者信息

Pavey Sandra, Johansson Peter, Packer Leisl, Taylor Jennifer, Stark Mitchell, Pollock Pamela M, Walker Graeme J, Boyle Glen M, Harper Ursula, Cozzi Sarah-Jane, Hansen Katherine, Yudt Laura, Schmidt Chris, Hersey Peter, Ellem Kay A O, O'Rourke Michael G E, Parsons Peter G, Meltzer Paul, Ringnér Markus, Hayward Nicholas K

机构信息

Queensland Institute of Medical Research, 300 Herston Rd, Herston, Queensland 4006, Australia.

出版信息

Oncogene. 2004 May 20;23(23):4060-7. doi: 10.1038/sj.onc.1207563.

Abstract

We have used microarray gene expression profiling and machine learning to predict the presence of BRAF mutations in a panel of 61 melanoma cell lines. The BRAF gene was found to be mutated in 42 samples (69%) and intragenic mutations of the NRAS gene were detected in seven samples (11%). No cell line carried mutations of both genes. Using support vector machines, we have built a classifier that differentiates between melanoma cell lines based on BRAF mutation status. As few as 83 genes are able to discriminate between BRAF mutant and BRAF wild-type samples with clear separation observed using hierarchical clustering. Multidimensional scaling was used to visualize the relationship between a BRAF mutation signature and that of a generalized mitogen-activated protein kinase (MAPK) activation (either BRAF or NRAS mutation) in the context of the discriminating gene list. We observed that samples carrying NRAS mutations lie somewhere between those with or without BRAF mutations. These observations suggest that there are gene-specific mutation signals in addition to a common MAPK activation that result from the pleiotropic effects of either BRAF or NRAS on other signaling pathways, leading to measurably different transcriptional changes.

摘要

我们利用基因芯片基因表达谱分析和机器学习方法,对61个黑色素瘤细胞系样本预测BRAF基因突变情况。结果发现,42个样本(69%)的BRAF基因发生突变,7个样本(11%)检测到NRAS基因的基因内突变。没有细胞系同时携带这两种基因的突变。我们利用支持向量机建立了一个基于BRAF突变状态区分黑色素瘤细胞系的分类器。仅83个基因就能区分BRAF突变型和BRAF野生型样本,通过层次聚类可观察到明显的分离。在区分基因列表的背景下,使用多维缩放来可视化BRAF突变特征与广义丝裂原活化蛋白激酶(MAPK)激活特征(BRAF或NRAS突变)之间的关系。我们观察到,携带NRAS突变的样本位于有或无BRAF突变的样本之间。这些观察结果表明,除了常见的MAPK激活外,还存在基因特异性突变信号,这是由于BRAF或NRAS对其他信号通路的多效性作用导致可测量的不同转录变化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验