Suppr超能文献

甘氨酸185突变为缬氨酸可改善人P-糖蛋白的能量偶联。

Improved energy coupling of human P-glycoprotein by the glycine 185 to valine mutation.

作者信息

Omote Hiroshi, Figler Robert A, Polar Mark K, Al-Shawi Marwan K

机构信息

Department of Molecular Physiology and Biological Physics, University of Virginia Health System, P.O. Box 800736, Charlottesville, Virginia 22908-0736, USA.

出版信息

Biochemistry. 2004 Apr 6;43(13):3917-28. doi: 10.1021/bi035365l.

Abstract

A glycine 185 to valine mutation of human P-glycoprotein (ABCB1, MDR1) has been previously isolated from high colchicine resistance cell lines. We have employed purified and reconstituted P-glycoproteins expressed in Saccharomyces cerevisiae [Figler et al. (2000) Arch. Biochem. Biophys. 376, 34-46] and devised a set of thermodynamic analyses to reveal the mechanism of improved resistance. Purified G185V enzyme shows altered basal ATPase activity but a strong stimulation of colchicine- and etoposide-dependent activities, suggesting a tight regulation of ATPase activity by these drugs. The mutant enzyme has a higher apparent K(m) for colchicine and a lower K(m) for etoposide than that of wild type. Kinetic constants for other transported drugs were not significantly modified by this mutation. Systematic thermodynamic analyses indicate that the G185V enzyme has modified thermodynamic properties of colchicine- and etoposide-dependent activities. To improve the rate of colchicine or etoposide transport, the G185V enzyme has lowered the Arrhenius activation energy of the transport rate-limiting step. The high transition state energies of wild-type P-glycoprotein, when transporting etoposide or colchicine, increase the probability of nonproductive degradation of the transition state without transport. G185V P-glycoprotein transports etoposide or colchicine in an energetically more efficient way with decreased enthalpic and entropic components of the activation energy. Our new data fully reconcile the apparently conflicting results of previous studies. EPR analysis of the spin-labeled G185C enzyme in a cysteine-less background and kinetic parameters of the G185C enzyme indicate that position 185 is surrounded by other residues and is volume sensitive. These results and atomic detail structural modeling suggest that residue 185 is a pivotal point in transmitting conformational changes between the catalytic sites and the colchicine drug binding domain. Replacement of this residue with a bulky valine alters this communication and results in more efficient transport of etoposide or colchicine.

摘要

人类P-糖蛋白(ABCB1,MDR1)的甘氨酸185到缬氨酸突变先前已从高秋水仙碱抗性细胞系中分离出来。我们使用了在酿酒酵母中表达的纯化和重组的P-糖蛋白[菲格勒等人(2000年)《生物化学与生物物理学报》376卷,34 - 46页],并设计了一组热力学分析来揭示抗性提高的机制。纯化的G185V酶显示出基础ATP酶活性改变,但秋水仙碱和依托泊苷依赖性活性受到强烈刺激,这表明这些药物对ATP酶活性有严格调控。与野生型相比,突变酶对秋水仙碱的表观K(m)更高,对依托泊苷的K(m)更低。其他转运药物的动力学常数未因该突变而显著改变。系统的热力学分析表明,G185V酶改变了秋水仙碱和依托泊苷依赖性活性的热力学性质。为了提高秋水仙碱或依托泊苷的转运速率,G185V酶降低了转运限速步骤的阿累尼乌斯活化能。野生型P-糖蛋白在转运依托泊苷或秋水仙碱时的高过渡态能量增加了过渡态无转运的非生产性降解的可能性。G185V P-糖蛋白以能量更有效的方式转运依托泊苷或秋水仙碱,同时活化能的焓和熵成分降低。我们的新数据完全调和了先前研究中明显相互矛盾的结果。在无半胱氨酸背景下对自旋标记的G185C酶的电子顺磁共振分析以及G185C酶的动力学参数表明,185位被其他残基包围且对体积敏感。这些结果和原子细节结构建模表明,185位残基是在催化位点和秋水仙碱药物结合结构域之间传递构象变化的关键点。用庞大的缬氨酸取代该残基会改变这种通讯,并导致依托泊苷或秋水仙碱的转运更有效。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验