Rainville Stéphane J M, Wilson Hugh R
Center for Vision Research, York University, 4700 Keele Street, North York, Ont., Canada M1J 1P3.
Vision Res. 2004 May;44(11):1065-77. doi: 10.1016/j.visres.2004.01.003.
It is well established that the visual system is sensitive to the global structure--or "form"--of objects defined exclusively by spatial or motion cues, but it remains unclear how form perception combines spatial and motion cues if these are presented concurrently. In the present study, we introduce a novel class of stimuli where spatial-form and motion-form can be superimposed and manipulated independently. In both the spatial and motion domains, global structure consisted of radial-frequency (RF) contours defined by a virtual circle of Gabor elements whose positions and/or drift speeds were sinusoidally modulated at a specified frequency of polar angle. The first two experiments revealed that observers encode the global structure of spatial-RF and motion-RF contours presented in isolation. In a third experiment, observers detected a spatial-RF modulation superimposed on a motion-RF pedestal of identical radial frequency: results showed little facilitation at low pedestal amplitudes but significant masking at higher pedestal amplitudes, especially if the RF modulations of test and pedestal were in anti-phase. Additional experiments demonstrated that masking of the spatial-RF test is abolished if the global structure of the motion-RF pedestal is altered or destroyed while local motion cues are preserved. We argue these results cannot be explained by local neural interactions between spatial and motion cues and propose instead that data reflect higher-level interactions between separate visual pathways encoding spatial-form and motion-form.
视觉系统对仅由空间或运动线索定义的物体的全局结构(即“形状”)敏感,这一点已得到充分证实,但如果同时呈现空间和运动线索,形状感知如何结合这些线索仍不清楚。在本研究中,我们引入了一类新型刺激,其中空间形状和运动形状可以独立叠加和操纵。在空间和运动领域,全局结构均由径向频率(RF)轮廓组成,这些轮廓由一个虚拟的Gabor元素圆定义,其位置和/或漂移速度在指定的极角频率下进行正弦调制。前两个实验表明,观察者能够编码单独呈现的空间RF和运动RF轮廓的全局结构。在第三个实验中,观察者检测叠加在相同径向频率的运动RF基座上的空间RF调制:结果显示,在低基座幅度下促进作用很小,但在较高基座幅度下有显著的掩蔽作用,特别是当测试和基座的RF调制呈反相时。额外的实验表明,如果运动RF基座的全局结构在保留局部运动线索的同时被改变或破坏,空间RF测试的掩蔽作用就会消除。我们认为,这些结果不能用空间和运动线索之间的局部神经相互作用来解释,而是提出数据反映了编码空间形状和运动形状的独立视觉通路之间的高级相互作用。