Suppr超能文献

检测睡眠中新生儿临床脑电图伪迹的联合技术

The combined technique for detection of artifacts in clinical electroencephalograms of sleeping newborns.

作者信息

Schetinin Vitaly, Schult Joachim

机构信息

Department of Computer Science, the University of Exeter, Exeter, EX4 4QF, UK.

出版信息

IEEE Trans Inf Technol Biomed. 2004 Mar;8(1):28-35. doi: 10.1109/titb.2004.824735.

Abstract

In this paper, we describe a new method combining the polynomial neural network and decision tree techniques in order to derive comprehensible classification rules from clinical electroencephalograms (EEGs) recorded from sleeping newborns. These EEGs are heavily corrupted by cardiac, eye movement, muscle, and noise artifacts and, as a consequence, some EEG features are irrelevant to classification problems. Combining the polynomial network and decision tree techniques, we discover comprehensible classification rules while also attempting to keep their classification error down. This technique is shown to out-perform a number of commonly used machine learning technique applied to automatically recognize artifacts in the sleep EEGs.

摘要

在本文中,我们描述了一种将多项式神经网络和决策树技术相结合的新方法,以便从睡眠新生儿记录的临床脑电图(EEG)中得出可理解的分类规则。这些脑电图受到心脏、眼动、肌肉和噪声伪迹的严重干扰,因此,一些脑电图特征与分类问题无关。通过结合多项式网络和决策树技术,我们发现了可理解的分类规则,同时也试图降低其分类误差。结果表明,该技术优于许多常用于自动识别睡眠脑电图中伪迹的机器学习技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验