Moran G R, Prato F S
Medical Physics and Applied Radiation Sciences Unit, McMaster University, Hamilton, Ontario, Canada.
Magn Reson Med. 2004 Apr;51(4):816-27. doi: 10.1002/mrm.20002.
A simulation is presented which calculates the MRI signal expected from a model tissue for a given pulse sequence after a bolus injection of a contrast agent. The calculation assumes two physiologic compartments only, the intravascular and extravascular spaces. The determination of the concentration of contrast in each compartment as a function of time and position has been outlined in a previous publication (Moran and Prato, Magn Reson Med 2001;45:42-45). These contrast agent concentrations are used here to determine the NMR relaxation times as a function of time and position within the tissue. Knowledge of this simulated tissue 'map' of relaxation times as a function of time provides the information required to determine whether the proton exchange rate is fast or slow on the NMR timescale. Since with a bolus injection the concentration of contrast and hence the relaxation time may vary with position along the capillary, some segments of the capillary are allowed to be in fast exchange with the extravascular space, while others may be in slow exchange. Using this information, and parameters specific to a given tissue, the MRI signal for a given pulse sequence is constructed which correctly accounts for differences in proton exchange across the length of the capillary. It is shown that extravascular contrast agents show less signal dependence on water exchange, and thus may be more appropriate for quantitative imaging when using fast exchange assumptions. It is also shown that nondistributed compartment models can incorrectly estimate the water exchange that is occurring at the capillary level if exchange-minimizing pulse sequences are not used.
本文提出了一种模拟方法,该方法可计算在注射造影剂团注后,给定脉冲序列下模型组织预期的磁共振成像(MRI)信号。该计算仅假设两个生理隔室,即血管内和血管外间隙。先前的一篇出版物(Moran和Prato,《磁共振医学》,2001年;45:42 - 45)已经概述了如何确定每个隔室中造影剂浓度随时间和位置的变化。此处使用这些造影剂浓度来确定组织内弛豫时间随时间和位置的函数关系。这种作为时间函数的模拟组织弛豫时间“图谱”的知识,提供了确定在核磁共振时间尺度上质子交换速率是快还是慢所需的信息。由于在团注注射时,造影剂浓度以及弛豫时间可能会沿着毛细血管随位置而变化,因此允许毛细血管的某些部分与血管外间隙进行快速交换,而其他部分可能进行缓慢交换。利用这些信息以及特定组织的参数,构建了给定脉冲序列的MRI信号,该信号正确地解释了整个毛细血管长度上质子交换的差异。结果表明,血管外造影剂对水交换的信号依赖性较小,因此在使用快速交换假设时,可能更适合用于定量成像。还表明,如果不使用使交换最小化的脉冲序列,非分布隔室模型可能会错误地估计在毛细血管水平发生的水交换。