Karasawa Satoshi, Araki Toshio, Nagai Takeharu, Mizuno Hideaki, Miyawaki Atsushi
Laboratory for Cell Function and Dynamics, Advanced Technology Development Group, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-city, Saitama, 351-0198, Japan.
Biochem J. 2004 Jul 1;381(Pt 1):307-12. doi: 10.1042/BJ20040321.
GFP (green fluorescent protein)-based FRET (fluorescence resonance energy transfer) technology has facilitated the exploration of the spatio-temporal patterns of cellular signalling. While most studies have used cyan- and yellow-emitting FPs (fluorescent proteins) as FRET donors and acceptors respectively, this pair of proteins suffers from problems of pH-sensitivity and bleeding between channels. In the present paper, we demonstrate the use of an alternative additional donor/acceptor pair. We have cloned two genes encoding FPs from stony corals. We isolated a cyan-emitting FP from Acropara sp., whose tentacles exhibit cyan coloration. Similar to GFP from Renilla reniformis, the cyan FP forms a tight dimeric complex. We also discovered an orange-emitting FP from Fungia concinna. As the orange FP exists in a complex oligomeric structure, we converted this protein into a monomeric form through the introduction of three amino acid substitutions, recently reported to be effective for converting DsRed into a monomer (Clontech). We used the cyan FP and monomeric orange FP as a donor/acceptor pair to monitor the activity of caspase 3 during apoptosis. Due to the close spectral overlap of the donor emission and acceptor absorption (a large Förster distance), substantial pH-resistance of the donor fluorescence quantum yield and the acceptor absorbance, as well as good separation of the donor and acceptor signals, the new pair can be used for more effective quantitative FRET imaging.
基于绿色荧光蛋白(GFP)的荧光共振能量转移(FRET)技术推动了细胞信号时空模式的探索。虽然大多数研究分别使用发射青色和黄色荧光的荧光蛋白(FPs)作为FRET供体和受体,但这对蛋白存在pH敏感性和通道间串色的问题。在本文中,我们展示了使用另一对供体/受体。我们克隆了来自石珊瑚的两个编码荧光蛋白的基因。我们从触手呈现青色的鹿角珊瑚属物种中分离出一种发射青色荧光的荧光蛋白。与来自海肾的GFP相似,这种青色荧光蛋白形成紧密的二聚体复合物。我们还从扁脑珊瑚中发现了一种发射橙色荧光的荧光蛋白。由于这种橙色荧光蛋白以复杂的寡聚体结构存在,我们通过引入三个氨基酸替换将其转化为单体形式,最近报道这三个氨基酸替换对将DsRed转化为单体有效(Clontech)。我们使用青色荧光蛋白和单体橙色荧光蛋白作为供体/受体对来监测凋亡过程中半胱天冬酶3的活性。由于供体发射光与受体吸收光的光谱重叠紧密(Förster距离大)、供体荧光量子产率和受体吸光度具有显著的pH抗性,以及供体和受体信号良好分离,这对新的荧光蛋白可用于更有效的定量FRET成像。