Ramage Judith M, Metheringham Rachael, Conn Andrew, Spendlove Ian, Moss Robert S, Patton Daniel T, Murray J Clifford, Rees Robert C, Durrant Lindy G
Cancer Research UK, Academic Unit of Clinical Oncology, University of Nottingham, City Hospital, Nottingham, United Kingdom.
Int J Cancer. 2004 Jun 10;110(2):245-50. doi: 10.1002/ijc.20120.
Tie-2 stabilises pericyte-endothelial interactions during angiogenesis and is highly expressed on endothelium during several diseases, including arthritis, age-related macular degeneration and cancer. A vaccine that targets endothelium overexpressing Tie-2 may result in vessel damage and stimulate an inflammatory cascade resulting in disease regression. We have identified a region unique to Tie-2 (amino acids 1-196) that is homologous in humans and mice. Using computer algorithms, several HLA-A0201 epitopes that are identical in mice and humans were predicted within this region; however, binding assays showed that the majority of these epitopes were of low affinity. Modification of the anchor residues of 4 epitopes enhanced HLA binding. These epitopes were incorporated by site-directed mutagenesis into a Tie-2 DNA construct. Immunisation of HLA0201 transgenic mice with one of the modified Tie-2 constructs stimulated CTLs that recognised both wild-type and modified peptide-pulsed target cells. In contrast, no CTLs were generated in mice immunised with wild-type Tie-2 construct, demonstrating that the modified epitope was necessary in the generation of CTLs. Moreover, CTLs from mice immunised with the modified construct killed HLA-A*0201 endothelial cells overexpressing Tie-2. Our study demonstrates that it is possible to break tolerance to the endothelial antigen Tie-2, suggesting that it may be feasible to design a vaccine to activate CTLs to kill endothelial cells overexpressing Tie-2.