Stals Ingeborg, Sandra Koen, Devreese Bart, Van Beeumen Jozef, Claeyssens Marc
Department of Biochemistry, Physiology and Microbiology, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium.
Glycobiology. 2004 Aug;14(8):725-37. doi: 10.1093/glycob/cwh081. Epub 2004 Apr 7.
A systematic analysis of the N-glycosylation of the catalytic domain of cellobiohydrolase I (Cel7A or CBH I) isolated from several Trichoderma reesei strains grown in minimal media was performed. Using a combination of chromatographic, electrophoretic, and mass spectrometric methods, the presence of glucosylated and phosphorylated oligosaccharides on the three N-glycosylation sites of Cel7A core protein (from T. reesei strains Rut-C30 and RL-P37) confirms previous findings. With N-glycans isolated from other strains, no end-capping glucose could be detected. Phosphodiester linkages were however found in proteins from each strain and these probably occur on both the alpha1-3 and the alpha1-6 branch of the high-mannose oligosaccharide tree. Evidence is also presented for the occurrence of mannobiosyl units on the phosphodiester linkage. Therefore the predominant N-glycans on Cel7A can be represented as (ManP)(0-1)GlcMan(7-8)GlcNAc2 for the hyperproducing Rut-C30 and RL-P37 mutants and as (Man(1-2)P)(0-1-2)Man(5-6-7)GlcNAc2 for the wild-type strain and the other mutants. As shown by ESI-MS, random substitution of these structures on the N-glycosylation sites explains the heterogeneous glycoform population of the isolated core domains. PAG-IEF separates up to five isoforms, resulting from posttranslational modification of Cel7A with mannosyl phosphodiester residues at the three distinct sites. This study clearly shows that posttranslational phosphorylation of glycoproteins is not atypical for Trichoderma sp. and that, in the case of the Rut-C30 and RL-P37 strains, the presence of an end-capped glucose residue at the alpha1-3 branch apparently hinders a second mannophoshoryl transfer.
对从在基本培养基中培养的几种里氏木霉菌株分离得到的纤维二糖水解酶I(Cel7A或CBH I)催化结构域的N-糖基化进行了系统分析。使用色谱、电泳和质谱方法相结合,在Cel7A核心蛋白(来自里氏木霉菌株Rut-C30和RL-P37)的三个N-糖基化位点上存在糖基化和磷酸化寡糖,证实了先前的发现。从其他菌株分离的N-聚糖中,未检测到封端葡萄糖。然而,在每个菌株的蛋白质中都发现了磷酸二酯键,这些键可能出现在高甘露糖寡糖树的α1-3和α1-6分支上。也有证据表明磷酸二酯键上存在甘露二糖基单元。因此,对于高产的Rut-C30和RL-P37突变体,Cel7A上的主要N-聚糖可表示为(ManP)(0-1)GlcMan(7-8)GlcNAc2,对于野生型菌株和其他突变体,可表示为(Man(1-2)P)(0-1-2)Man(5-6-7)GlcNAc2。如电喷雾电离质谱(ESI-MS)所示,这些结构在N-糖基化位点上的随机取代解释了分离的核心结构域的异质糖型群体。聚丙烯酰胺凝胶等聚焦电泳(PAG-IEF)可分离多达五种同工型,这是由于Cel7A在三个不同位点被甘露糖基磷酸二酯残基进行翻译后修饰所致。这项研究清楚地表明,糖蛋白的翻译后磷酸化对于木霉属并不罕见,并且在Rut-C30和RL-P37菌株的情况下,α1-3分支上存在封端葡萄糖残基显然阻碍了第二次甘露糖磷酸基转移。