Suppr超能文献

通过定向进化提高来自[具体来源未给出]的纤维二糖水解酶Cel7A的热稳定性。

Improving the thermal stability of cellobiohydrolase Cel7A from by directed evolution.

作者信息

Goedegebuur Frits, Dankmeyer Lydia, Gualfetti Peter, Karkehabadi Saeid, Hansson Henrik, Jana Suvamay, Huynh Vicky, Kelemen Bradley R, Kruithof Paulien, Larenas Edmund A, Teunissen Pauline J M, Ståhlberg Jerry, Payne Christina M, Mitchinson Colin, Sandgren Mats

机构信息

From DuPont Industrial Biosciences, Archimedesweg 30, Leiden 2333CN, The Netherlands,

From DuPont Industrial Biosciences, Archimedesweg 30, Leiden 2333CN, The Netherlands.

出版信息

J Biol Chem. 2017 Oct 20;292(42):17418-17430. doi: 10.1074/jbc.M117.803270. Epub 2017 Aug 31.

Abstract

Secreted mixtures of cellulases are able to efficiently degrade cellulosic biomass to fermentable sugars at large, commercially relevant scales. Cel7A, cellobiohydrolase I, from glycoside hydrolase family 7, is the workhorse enzyme of the process. However, the thermal stability of Cel7A limits its use to processes where temperatures are no higher than 50 °C. Enhanced thermal stability is desirable to enable the use of higher processing temperatures and to improve the economic feasibility of industrial biomass conversion. Here, we enhanced the thermal stability of Cel7A through directed evolution. Sites with increased thermal stability properties were combined, and a Cel7A variant (FCA398) was obtained, which exhibited a 10.4 °C increase in and a 44-fold greater half-life compared with the wild-type enzyme. This Cel7A variant contains 18 mutated sites and is active under application conditions up to at least 75 °C. The X-ray crystal structure of the catalytic domain was determined at 2.1 Å resolution and showed that the effects of the mutations are local and do not introduce major backbone conformational changes. Molecular dynamics simulations revealed that the catalytic domain of wild-type Cel7A and the FCA398 variant exhibit similar behavior at 300 K, whereas at elevated temperature (475 and 525 K), the FCA398 variant fluctuates less and maintains more native contacts over time. Combining the structural and dynamic investigations, rationales were developed for the stabilizing effect at many of the mutated sites.

摘要

纤维素酶的分泌混合物能够在大规模、具有商业相关性的规模下有效地将纤维素生物质降解为可发酵糖。来自糖苷水解酶家族7的纤维二糖水解酶I(Cel7A)是该过程的主力酶。然而,Cel7A的热稳定性限制了其在温度不高于50°C的过程中的使用。提高热稳定性对于能够使用更高的加工温度和提高工业生物质转化的经济可行性是可取的。在这里,我们通过定向进化提高了Cel7A的热稳定性。将具有增强热稳定性特性的位点进行组合,获得了一个Cel7A变体(FCA398),与野生型酶相比,其熔点提高了10.4°C,半衰期延长了44倍。这个Cel7A变体包含18个突变位点,在至少75°C的应用条件下仍具有活性。催化结构域的X射线晶体结构在2.1 Å分辨率下确定,结果表明突变的影响是局部的,不会引起主要的主链构象变化。分子动力学模拟显示,野生型Cel7A和FCA398变体的催化结构域在300 K时表现出相似的行为,而在升高的温度(475和525 K)下,FCA398变体波动较小,并且随着时间的推移保持更多的天然接触。结合结构和动力学研究,为许多突变位点的稳定作用提出了理论依据。

相似文献

1
Improving the thermal stability of cellobiohydrolase Cel7A from by directed evolution.
J Biol Chem. 2017 Oct 20;292(42):17418-17430. doi: 10.1074/jbc.M117.803270. Epub 2017 Aug 31.
2
Structural insights into the inhibition of cellobiohydrolase Cel7A by xylo-oligosaccharides.
FEBS J. 2015 Jun;282(11):2167-77. doi: 10.1111/febs.13265. Epub 2015 Apr 8.
3
Engineered thermostable fungal Cel6A and Cel7A cellobiohydrolases hydrolyze cellulose efficiently at elevated temperatures.
Biotechnol Bioeng. 2013 Jul;110(7):1874-83. doi: 10.1002/bit.24864. Epub 2013 Mar 1.
4
Expression, crystal structure and cellulase activity of the thermostable cellobiohydrolase Cel7A from the fungus Humicola grisea var. thermoidea.
Acta Crystallogr D Biol Crystallogr. 2014 Sep;70(Pt 9):2356-66. doi: 10.1107/S1399004714013844. Epub 2014 Aug 29.
5
Hypocrea jecorina cellobiohydrolase I stabilizing mutations identified using noncontiguous recombination.
ACS Synth Biol. 2013 Dec 20;2(12):690-6. doi: 10.1021/sb400010m. Epub 2013 Jun 3.
6
Engineered thermostable fungal cellulases exhibit efficient synergistic cellulose hydrolysis at elevated temperatures.
Biotechnol Bioeng. 2014 Dec;111(12):2390-7. doi: 10.1002/bit.25308. Epub 2014 Aug 5.
10
D-Galactose induces cellulase gene expression in Hypocrea jecorina at low growth rates.
Microbiology (Reading). 2006 May;152(Pt 5):1507-1514. doi: 10.1099/mic.0.28719-0.

引用本文的文献

1
Tailoring in fungi for next generation cellulase production with special reference to CRISPR/CAS system.
Syst Microbiol Biomanuf. 2022;2(1):113-129. doi: 10.1007/s43393-021-00045-9. Epub 2021 Jul 29.
2
The S-S bridge mutation between the A2 and A4 loops (T416C-I432C) of Cel7A of enhances catalytic activity and thermostability.
Appl Environ Microbiol. 2024 Apr 17;90(4):e0232923. doi: 10.1128/aem.02329-23. Epub 2024 Mar 5.
3
Engineering of glycoside hydrolase family 7 cellobiohydrolases directed by natural diversity screening.
J Biol Chem. 2024 Mar;300(3):105749. doi: 10.1016/j.jbc.2024.105749. Epub 2024 Feb 13.
4
Engineering the Metabolic Landscape of Microorganisms for Lignocellulosic Conversion.
Microorganisms. 2023 Aug 31;11(9):2197. doi: 10.3390/microorganisms11092197.
5
Engineering cellulases for conversion of lignocellulosic biomass.
Protein Eng Des Sel. 2023 Jan 21;36. doi: 10.1093/protein/gzad002.
6
Evolution-aided engineering of plant specialized metabolism.
aBIOTECH. 2021 Jun 19;2(3):240-263. doi: 10.1007/s42994-021-00052-3. eCollection 2021 Sep.
9
Engineering Strategies to Overcome the Stability-Function Trade-Off in Proteins.
ACS Synth Biol. 2022 Mar 18;11(3):1030-1039. doi: 10.1021/acssynbio.1c00512. Epub 2022 Mar 8.
10
Fungal cellulases: protein engineering and post-translational modifications.
Appl Microbiol Biotechnol. 2022 Jan;106(1):1-24. doi: 10.1007/s00253-021-11723-y. Epub 2021 Dec 10.

本文引用的文献

2
Comparing Residue Clusters from Thermophilic and Mesophilic Enzymes Reveals Adaptive Mechanisms.
PLoS One. 2016 Jan 7;11(1):e0145848. doi: 10.1371/journal.pone.0145848. eCollection 2016.
3
Fungal cellulases.
Chem Rev. 2015 Feb 11;115(3):1308-448. doi: 10.1021/cr500351c. Epub 2015 Jan 28.
4
Expression, crystal structure and cellulase activity of the thermostable cellobiohydrolase Cel7A from the fungus Humicola grisea var. thermoidea.
Acta Crystallogr D Biol Crystallogr. 2014 Sep;70(Pt 9):2356-66. doi: 10.1107/S1399004714013844. Epub 2014 Aug 29.
5
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
7
The importance of pyroglutamate in cellulase Cel7A.
Biotechnol Bioeng. 2014 Apr;111(4):842-7. doi: 10.1002/bit.25178. Epub 2014 Jan 28.
9
Glycoside hydrolase processivity is directly related to oligosaccharide binding free energy.
J Am Chem Soc. 2013 Dec 18;135(50):18831-9. doi: 10.1021/ja407287f. Epub 2013 Dec 5.
10
The crystal structure of the core domain of a cellulose induced protein (Cip1) from Hypocrea jecorina, at 1.5 Å resolution.
PLoS One. 2013 Sep 5;8(9):e70562. doi: 10.1371/journal.pone.0070562. eCollection 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验