Suppr超能文献

Multilocus short sequence repeat sequencing approach for differentiating among Mycobacterium avium subsp. paratuberculosis strains.

作者信息

Amonsin Alongkorn, Li Ling Ling, Zhang Qing, Bannantine John P, Motiwala Alifiya S, Sreevatsan Srinand, Kapur Vivek

机构信息

Department of Microbiology and Biomedical Genomics Center, University of Minnesota, St. Paul, Minnesota 55108, USA.

出版信息

J Clin Microbiol. 2004 Apr;42(4):1694-702. doi: 10.1128/JCM.42.4.1694-1702.2004.

Abstract

We describe a multilocus short sequence repeat (MLSSR) sequencing approach for the genotyping of Mycobacterium avium subsp. paratuberculosis (M. paratuberculosis) strains. Preliminary analysis identified 185 mono-, di-, and trinucleotide repeat sequences dispersed throughout the M. paratuberculosis genome, of which 78 were perfect repeats. Comparative nucleotide sequencing of the 78 loci of six M. paratuberculosis isolates from different host species and geographic locations identified a subset of 11 polymorphic short sequence repeats (SSRs), with an average of 3.2 alleles per locus. Comparative sequencing of these 11 loci was used to genotype a collection of 33 M. paratuberculosis isolates representing different multiplex PCR for IS900 loci (MPIL) or amplified fragment length polymorphism (AFLP) types. The analysis differentiated the 33 M. paratuberculosis isolates into 20 distinct MLSSR types, consistent with geographic and epidemiologic correlates and with an index of discrimination of 0.96. MLSSR analysis was also clearly able to distinguish between sheep and cattle isolates of M. paratuberculosis and easily and reproducibly differentiated strains representing the predominant MPIL genotype (genotype A18) and AFLP genotypes (genotypes Z1 and Z2) of M. paratuberculosis described previously. Taken together, the results of our studies suggest that MLSSR sequencing enables facile and reproducible high-resolution subtyping of M. paratuberculosis isolates for molecular epidemiologic and population genetic analyses.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验