Suppr超能文献

A structural and electrochemical investigation of 1-alkyl-3-methylimidazolium salts of the nitratodioxouranate(VI) anions [[UO2(NO3)2]2(mu 4-C2O4)]2-, [UO2(NO3)3]-, and [UO2(NO3)4]2-.

作者信息

Bradley Antonia E, Hardacre Christopher, Nieuwenhuyzen Mark, Pitner William R, Sanders David, Seddon Kenneth R, Thied Robert C

机构信息

The QUILL Centre, The School of Chemistry, Queen's University Belfast, Stranmillis Road, Belfast BT9 5AG, Northern Ireland, United Kingdom.

出版信息

Inorg Chem. 2004 Apr 19;43(8):2503-14. doi: 10.1021/ic035350b.

Abstract

The properties of the 1-butyl-3-methylimidazolium salt of the dinuclear mu(4)-(O,O,O',O'-ethane-1,2-dioato)bis[bis(nitrato-O,O)dioxouranate(VI)] anion have been investigated using electrochemistry, single-crystal X-ray crystallography, and extended X-ray absorbance fine structure spectroscopy: the anion structures from these last two techniques are in excellent agreement with each other. Electrochemical reduction of the complex leads to the a two-electron metal-centered reduction of U(VI) to U(IV), and the production of UO(2), or a complex containing UO(2). Under normal conditions, this leads to the coating of the electrode with a passivating film. The presence of volatile organic compounds in the ionic liquids 1-alkyl-3-methylimidazolium nitrate (where the 1-alkyl chain was methyl, ethyl, propyl, butyl, pentyl, hexyl, dodecyl, hexadecyl, or octadecyl) during the oxidative dissolution of uranium(IV) oxide led to the formation of a yellow precipitate. To understand the effect of the cation upon the composition and structure of the precipitates, 1-alkyl-3-methylimidazolium salts of a number of nitratodioxouranate(VI) complexes were synthesized and then analyzed using X-ray crystallography. It was demonstrated that the length of the 1-alkyl chain played an important role, not only in the composition of the complex salt, but also in the synthesis of dinuclear anions containing the bridging mu(4)-(O,O,O',O'-ethane-1,2-dioato), or oxalato, ligand, by protecting it from further oxidation.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验