Kwiek Jesse J, Haystead Timothy A J, Rudolph Johannes
Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina 27710, USA.
Biochemistry. 2004 Apr 20;43(15):4538-47. doi: 10.1021/bi035923w.
Quinone oxidoreductase 2 (QR2) purified from human red blood cells was recently shown to be a potential target of the quinoline antimalarial compounds [Graves et al., (2002) Mol. Pharmacol. 62, 1364]. QR2 catalyzes the two-electron reduction of menadione via the oxidation of N-alkylated or N-ribosylated nicotinamides. To investigate the mechanism and consequences of inhibition of QR2 by the quinolines further, we have used steady-state and transient-state kinetics to define the mechanism of QR2. Importantly, we have shown that QR2 when isolated from an overproducing strain of E. coli is kinetically equivalent to the enzyme from the native human red blood cell source. We observe ping-pong kinetics consistent with one substrate/inhibitor binding site that shows selectivity for the oxidation state of the FAD cofactor, suggesting that selective inhibition of the liver versus red blood cell forms of malaria may be possible. The reductant N-methyldihydronicotinamide and the inhibitor primaquine bind exclusively to the oxidized enzyme. In contrast, the inhibitors quinacrine and chloroquine bind exclusively to the reduced enzyme. The quinone substrate menadione, on the other hand, binds nonspecifically to both forms of the enzyme. Single-turnover kinetics of the reductive half-reaction are chemically and kinetically competent and confirm the inhibitor selectivity seen in the steady-state experiments. Our studies shed light on the possible in vivo potency of the quinolines and provide a foundation for future studies aimed at creating more potent QR2 inhibitors and at understanding the physiological significance of QR2.
最近研究表明,从人红细胞中纯化得到的醌氧化还原酶2(QR2)是喹啉抗疟化合物的潜在靶点[格雷夫斯等人,(2002年)《分子药理学》62卷,第1364页]。QR2通过N-烷基化或N-核糖基化烟酰胺的氧化催化甲萘醌的双电子还原反应。为了进一步研究喹啉对QR2抑制作用的机制及后果,我们运用稳态和瞬态动力学来确定QR2的作用机制。重要的是,我们发现从大肠杆菌高产菌株中分离得到的QR2在动力学上与天然人红细胞来源的酶相当。我们观察到乒乓动力学,这与一个底物/抑制剂结合位点一致,该位点对FAD辅因子的氧化态具有选择性,这表明对疟疾的肝脏型和红细胞型进行选择性抑制可能是可行的。还原剂N-甲基二氢烟酰胺和抑制剂伯氨喹仅与氧化型酶结合。相比之下,抑制剂奎纳克林和氯喹仅与还原型酶结合。另一方面,醌底物甲萘醌与两种形式的酶均非特异性结合。还原半反应的单周转动力学在化学和动力学上是可行的,并证实了稳态实验中观察到的抑制剂选择性。我们的研究揭示了喹啉在体内可能的效力,并为未来旨在开发更有效的QR2抑制剂以及理解QR2生理意义的研究奠定了基础。