Birmingham John T, Graham Dustin M, Tauck David L
Department of Physics, Santa Clara University, Santa Clara, California 95053, USA.
J Neurosci Res. 2004 May 1;76(3):277-81. doi: 10.1002/jnr.20022.
The recent development of techniques for stimulating and recording from individual neurons grown on semiconductor chips has ushered in a new era in the field of neuroelectronics. Using this approach to construct complex neural circuits on silicon from individual neurons will require improvements at the neuron/semiconductor interface and advances in controlling synaptogenesis. Although devices incorporating vertebrate neurons may be an ultimate goal, initial investigations using neurons from the pond snail Lymnaea stagnalis have distinct advantages. Simple two-cell networks connected by electrical synapses have already been reconstructed on semiconductor chips. Furthermore, considerable progress has been made in controlling the processes that underlie chemical synapse formation in Lymnaea. Studies of Lymnaea neural networks on silicon chips will lead to a deeper understanding of the long-term dynamics of simple neural circuits and may provide the basis for reliable interfaces for new neuroprosthetic devices.
近期,在半导体芯片上培养并对单个神经元进行刺激和记录的技术取得了进展,开创了神经电子学领域的新纪元。利用这种方法在硅片上从单个神经元构建复杂的神经回路,需要改进神经元与半导体的界面,并在控制突触形成方面取得进展。尽管整合脊椎动物神经元的装置可能是最终目标,但最初使用池塘蜗牛椎实螺的神经元进行的研究具有明显优势。通过电突触连接的简单双细胞网络已经在半导体芯片上重建。此外,在控制椎实螺化学突触形成的基础过程方面已经取得了相当大的进展。对硅芯片上椎实螺神经网络的研究将有助于更深入地理解简单神经回路的长期动态,并可能为新型神经假体装置的可靠接口提供基础。