Suppr超能文献

头霉素类似物——合成与生物活性

Cephalostatin analogues--synthesis and biological activity.

作者信息

Flessner Timo, Jautelat Rolf, Scholz Ulrich, Winterfeldt Ekkehard

机构信息

Pharma Research, Bayer HealthCare AG, Wuppertal, Germany.

出版信息

Fortschr Chem Org Naturst. 2004;87:1-80. doi: 10.1007/978-3-7091-0581-8_1.

Abstract

Starting off in the early 90's the field of cephalostatin analogues has continually expanded over the last 10 years. First syntheses prepared symmetric analogues like 14b (119) and 26 (65), which were subsequently desymmetrized to provide analogues like beta-hydroxy ketone 31 (19). Importantly the straightforward approach provided already compounds with mu-molar potency and the same pattern of activity as cephalostatin 1 (1) (see Chapter 2.1). Chemically more demanding, two new methods for the directed synthesis of (bissteroidal) pyrazines were devised and subsequently applied to a wide variety of differently functionalized coupling partners. These new methods allowed for the synthesis of various analogues (Chapter 2.2.; and, last but not least, for the totals synthesis of several cephalostatin natural products; Chapter 1.). Functionalization and derivatization of the 12-position was performed (Chapter 2.1 and 3) and synthetic approaches to establish the D-ring double bond were successfully investigated (Chapter 3). [figure: see text] Dealing synthetically with the spiroketal moiety, novel oxidative opening procedures on monomeric delta 14, 15-steroids were devised as well as intensive studies regarding spiroketal synthesis and spiroketal rearrangements were conducted (Chapter 3.2. and 4.). Last but not least direct chemical modification of ritterazines and cephalostatins were studied, which provided a limited number of ritterazine analogues (Chapter 4.). All these synthetic activities towards analogues are summarized in Fig. 18. During this period of time the growing number of cephalostatins and ritterazines on the one hand and of analogues on the other hand provided several SAR trends, which can guide future analogue synthesis. The combined SAR findings are displayed in Fig. 19. So far it is apparent that: Additional methoxylations or hydroxylations in the steroidal A ring core structure (1-position) are slightly decreasing activity (compare cephalostatin 1 1 to cephalostatins 18, 19, 10, and 11). Not investigated by preparation of analogues. Additional hydroxylations in the B-ring (7- and 9-position) do not have a strong effect. They appear to decrease slightly the activity in the case of 9-position (compare cephalostatin 1 1 to cephalostatin 4) and are neutral in the case of the 7-position (compare ritterazines J and K). Analogue synthesis confirmed this: 7-ring-hydroxylation has little impact on activity, e.g. 109a (Table 6). C'-ring aryl compounds with a 12,17 connected spiroketal area are much less active (cephalostatins 5 and 6), meaning South 6 moiety reduces activity [figure: see text] Confirmed by analogue synthesis, e.g. 190a and 190b (Table 9). Regarding 12-functionalization it is apparent, that all cephalostatins/ritterazines possess either a free hydroxy or a keto function at this position (exemption: cephalostatins 5 and 6--very low activity). However, it is not apparent whether a 12,12'-diol or a 12-keto-12'-ol is favored. In the cephalostatin series the most potent compounds possess a 12-keto-12'-ol function, while in the ritterazine series the direct comparison of ritterazine B and ritterazine H clearly favors the 12,12'-diol setting. Synthesis of simple analogues like 31 showed a "cephalostatin trend" for favoring the 12-keto, 12'-alcohol functionalization. Synthesis of a cephalostatin 1-12'-alcohol 1a supported that trend (2 fold drop in activity). Synthesis of acylated ritterazine B derivatives proved that free hydroxy groups in 12-position are necessary for high activity. At least one 14,15-double bond is part of all highly active cephalostatins/ritterazines. All ritterazines lacking this feature display only low potency (but most of them possess the unfavorable North A moiety or have unfavorable combinations of moieties; vide infra). However, the 14,15-double bond may be necessary "only" for stereochemical reasons creating a specific "curvature" of the molecule by "bending" the D-ring down (for an in depth discussion on this topic: see Chapter 3). In line with this are the observations that 14,15-alpha-epoxides do substantially decrease activity (cephalostatins 14 and 15) while a 14,15-beta-epoxide does not decrease activity (cephalostatin 4). Also in line with the "curvature theory" is the fact that ritterazine B (14-beta-hydrogen) is even more potent than ritterazine G (14,15-double bond). Therefore it is not clear if--at least one--14,15-double bond is essential for high activity. The synthesis and biological evaluation of completely 14-beta-saturated analogues (like 14'-beta-hydrogen ritterazine B) could answer this question. Synthesis of the partially saturated analogues 14' alpha-cephalostatin 1 1c and 7-deoxy-14' alpha-ritterazine B 2a showed that the stronger the divergence of conformation implied by the saturation is, the higher is the loss of activity, thus underlining the "curvature hypothesis". Synthesis showed, that analogues possessing the 14,15-double bond(s) are substantially better soluble, e.g. 26. Furthermore, the D-Ring area turned out to be sensitive for modifications, since substantially differing analogues, like 162, 163, and 164 were completely inactive. At least one 17-hydroxy group is part of all highly active cephalostatins/ritterazines. Loss of one out of two 17-hydroxy groups does not decrease activity (compare ritterazine K and L) but of the second 17-hydroxy groups (along with the 7-hydroxy group) as seen in the ritterazine series (compare ritterazines A/T and B/Y) leads to a significant decrease in activity. Increased activity of 17-ether analogues 178 and 179 points into the same direction All highly active cephalostatins and ritterazines are substantially asymmetric. Cephalostatins and ritterazines that are symmetric--either consisting of two polar units (cephalostatin 12 and ritterazine K) or two unpolar units (ritterazine N and ritterazine R)--or almost symmetric (cephalostatin 13 and ritterazine J, L, M, O, S) show substantially diminished potency. However, one has to keep in mind, that even some of the symmetrical compounds (e.g. ritterazine K--96 nM in the NCI panel) still show strong cytostatic properties. Same trend was identified with simple analogues, e.g. compare 26 to 31. In addition to the basic requirement of overall substantial asymmetry for high activity there appears to be the necessity for a "polarity match" between both steroidal units (33)--as one has to be substantially more polar (high hydroxylation grade) than the other. (e.g. cephalostatin 1 (1): North 1--high hydroxylation grade--and South 1--low hydroxylation grade; or: ritterazine B (2): South 7--medium hydroxylation grade--and North G--very low hydroxylation grade). Not directly confirmed by Analogue Synthesis--some "polarity matched analogues" did not show appropriate activity, e.g. 198 and 197. 4 core moieties are privileged, meaning all highly active ritterazines/cephalostatins (see table 1) are constructed out of them. Namely these are North 1, South 1, South 7 and North G. Numerous analogues were prepared to probe questions regarding the mechanism of action of the cephalostatins, e.g. close cephalostatin analogues like 197 and 198 (70) with increased energy content in the spiroketal. However, so far the mechanism and mode of action of the cephalostatins remains unknown. In the absence of any structural information of the biological target(s), the understanding about the structural necessities for high cytostatic activity is still limited and thus the rational design of more simple, yet highly active analogues seems at the current stage elusive. Additionally, there are many open questions, e.g. how the "monomeric" OSW-1 (3) relates to the "dimeric" cephalostatins. It remains the hope that forthcoming studies will bring light into this so far nebulous area--enabling chemists in the long run to provide highly active analogues in substantial amounts for advanced pharmacological studies. In conclusion one can state that the first decade after the extraordinarily complex cephalostatin 1 (1) entered the scene was necessary for the chemists to explore novel ways towards cephalostatins and cephalostatin analogues. They have provided methods to prepare basically every thinkable cephalostatin analogue, have delivered simple analogues (< 10 steps) with substantial activity and shaped first SAR trends in the class of cephalostatins. Now the time has come for chemists to harvest the fruits of their long and enduring synthetic ventures by aiming towards highly active, yet still not too complex analogues, which could be available in substantial amounts for advanced pharmacological studies. And for pharmacologists to explore the therapeutic potential of the cephalostatins along with elucidation of the unknown mechanism. Clearly, there is much more to expect of the cephalostatins in the coming years.

摘要

从90年代初开始,在过去10年里,头霉素类似物领域不断扩展。最初的合成制备了对称类似物,如14b(119)和26(65),随后将其去对称化以提供类似物,如β-羟基酮31(19)。重要的是,这种直接的方法已经提供了具有微摩尔效力且与头霉素1(1)具有相同活性模式的化合物(见第2.1章)。在化学要求更高的方面,设计了两种用于定向合成(双甾体)吡嗪的新方法,随后将其应用于各种不同功能化的偶联伙伴。这些新方法允许合成各种类似物(第2.2章);而且,最后但同样重要的是,用于几种头霉素天然产物的全合成(第1章)。对12位进行了官能化和衍生化(第2.1章和第3章),并成功研究了建立D环双键的合成方法(第3章)。[图:见正文]在处理螺环酮部分的合成时,设计了关于单体δ14,15 - 甾体的新型氧化开环程序,并对螺环酮合成和螺环酮重排进行了深入研究(第3.2章和第4章)。最后但并非最不重要的是,对头霉素和瑞他霉素的直接化学修饰进行了研究,这提供了数量有限的瑞他霉素类似物(第4章)。所有这些针对类似物的合成活动总结在图18中。在这段时间里,一方面头霉素和瑞他霉素的数量不断增加,另一方面类似物的数量也不断增加,这提供了几个构效关系趋势,可指导未来类似物的合成。综合的构效关系研究结果显示在图19中。到目前为止,很明显:甾体A环核心结构(1位)中额外的甲氧基化或羟基化会略微降低活性(比较头霉素1与头霉素18、19、10和11)。未通过类似物的制备进行研究。B环(7位和9位)中额外的羟基化没有强烈影响。在9位的情况下,它们似乎会略微降低活性(比较头霉素1与头霉素4),而在7位的情况下则呈中性(比较瑞他霉素J和K)。类似物合成证实了这一点:7环羟基化对活性影响很小,例如109a(表6)。具有12,17连接螺环酮区域的C'环芳基化合物活性低得多(头霉素5和6),这意味着南方6部分会降低活性[图:见正文]通过类似物合成得到证实,例如190a和190b(表9)。关于12位官能化,很明显,所有头霉素/瑞他霉素在该位置都具有游离羟基或酮官能团(例外:头霉素5和6 - 活性非常低)。然而,尚不清楚12,12'-二醇或12 - 酮 - 12'-醇是否更受青睐。在头霉素系列中,最有效的化合物具有12 - 酮 - 12'-醇官能团,而在瑞他霉素系列中,瑞他霉素B和瑞他霉素H的直接比较明显有利于12,12'-二醇的设置。简单类似物如31的合成显示出有利于12 - 酮、12'-醇官能化的“头霉素趋势”。头霉素1 - 12'-醇1a的合成支持了这一趋势(活性下降2倍)。酰化瑞他霉素B衍生物的合成证明12位的游离羟基对于高活性是必要的。所有高活性的头霉素/瑞他霉素都至少有一个14,15 - 双键。所有缺乏此特征的瑞他霉素仅显示出低效力(但它们中的大多数具有不利的北方A部分或具有不利的部分组合;见下文)。然而,14,15 - 双键可能“仅”出于立体化学原因是必要的,通过将D环向下“弯曲”来产生分子的特定“曲率”(关于此主题的深入讨论:见第3章)。与此一致的是,观察到14,15 - α - 环氧化物会显著降低活性(头霉素14和15),而14,15 - β - 环氧化物不会降低活性(头霉素4)。同样与“曲率理论”一致的是,瑞他霉素B(14 - β - 氢)甚至比瑞他霉素G(14,15 - 双键)更有效。因此,尚不清楚至少一个14,15 - 双键对于高活性是否必不可少。完全14 - β - 饱和类似物(如14'-β - 氢瑞他霉素B)的合成和生物学评价可以回答这个问题。部分饱和类似物14'α - 头霉素1 1c和7 - 脱氧 - 14'α - 瑞他霉素B 2a的合成表明,饱和度所暗示的构象差异越大,活性损失越高,从而强调了“曲率假设”。合成表明,具有14,15 - 双键的类似物溶解性显著更好,例如26。此外,D环区域对修饰敏感,因为结构差异很大的类似物,如162、163和164完全无活性。所有高活性的头霉素/瑞他霉素都至少有一个17 - 羟基。两个17 - 羟基中失去一个不会降低活性(比较瑞他霉素K和L),但如在瑞他霉素系列中所见,第二个17 - 羟基(与7 - 羟基一起)的失去(比较瑞他霉素A/T和B/Y)会导致活性显著降低。17 - 醚类似物178和179活性的增加也指向同一方向。所有高活性的头霉素和瑞他霉素都具有显著的不对称性。对称的头霉素和瑞他霉素,要么由两个极性单元(头霉素12和瑞他霉素K)组成,要么由两个非极性单元(瑞他霉素N和瑞他霉素R)组成,或者几乎对称(头霉素13和瑞他霉素J、L、M、O、S),其效力显著降低。然而,必须记住,即使一些对称化合物(例如瑞他霉素K - 在NCI面板中为纳摩尔)仍然显示出很强的细胞抑制特性。简单类似物也发现了相同的趋势,例如比较26和31。除了高活性对整体显著不对称性的基本要求外,两个甾体单元之间似乎还需要“极性匹配”(33) - 因为其中一个必须比另一个极性大得多(高羟基化程度)。(例如头霉素1(1):北方1 - 高羟基化程度 - 和南方1 - 低羟基化程度;或者:瑞他霉素B(2):南方7 - 中等羟基化程度 - 和北方G - 非常低羟基化程度)。未通过类似物合成直接证实 - 一些“极性匹配类似物”没有显示出适当的活性,例如将198和197。4个核心部分是有优势的,这意味着所有高活性的瑞他霉素/头霉素(见表1)都是由它们构建而成的。即这些是北方1、南方1、南方7和北方G。制备了许多类似物来探究关于头霉素作用机制的问题,例如具有增加的螺环酮能量含量类似于197和198(70)的头霉素类似物。然而,到目前为止,头霉素的作用机制和方式仍然未知。在缺乏生物靶点任何结构信息的情况下,对高细胞抑制活性的结构必要性的理解仍然有限,因此在当前阶段,合理设计更简单但高活性的类似物似乎难以实现。此外,还有许多未解决的问题,例如“单体”OSW - 1(3)与“二聚体”头霉素如何相关。希望未来的研究能为这个迄今为止模糊不清的领域带来曙光 - 从长远来看,使化学家能够大量提供高活性类似物用于高级药理学研究。总之,可以说在极其复杂的头霉素1(1)出现后的第一个十年里,化学家有必要探索通往头霉素和头霉素类似物的新方法。他们提供了制备基本上每一种可想象的头霉素类似物的方法,提供了具有显著活性的简单类似物(<10步),并塑造了头霉素类的首个构效关系趋势。现在,化学家们到了收获他们长期不懈合成努力成果的时候了,目标是合成高活性但仍然不太复杂的类似物,这些类似物可以大量用于高级药理学研究。对于药理学家来说,则要探索头霉素的治疗潜力并阐明未知的机制。显然,在未来几年里,对头霉素还有更多的期待。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验