Suppr超能文献

神经学蛋白质并不富含重复序列。

Neurological proteins are not enriched for repetitive sequences.

作者信息

Huntley Melanie A, Golding G Brian

机构信息

Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada.

出版信息

Genetics. 2004 Mar;166(3):1141-54. doi: 10.1534/genetics.166.3.1141.

Abstract

Proteins associated with disease and development of the nervous system are thought to contain repetitive, simple sequences. However, genome-wide surveys for simple sequences within proteins have revealed that repetitive peptide sequences are the most frequent shared peptide segments among eukaryotic proteins, including those of Saccharomyces cerevisiae, which has few to no specialized developmental and neurological proteins. It is therefore of interest to determine if these specialized proteins have an excess of simple sequences when compared to other sets of compositionally similar proteins. We have determined the relative abundance of simple sequences within neurological proteins and find no excess of repetitive simple sequence within this class. In fact, polyglutamine repeats that are associated with many neurodegenerative diseases are no more abundant within neurological specialized proteins than within nonneurological collections of proteins. We also examined the codon composition of serine homopolymers to determine what forces may play a role in the evolution of extended homopolymers. Codon type homogeneity tends to be favored, suggesting replicative slippage instead of selection as the main force responsible for producing these homopolymers.

摘要

与神经系统疾病和发育相关的蛋白质被认为含有重复的简单序列。然而,对蛋白质中简单序列的全基因组调查显示,重复肽序列是真核生物蛋白质中最常见的共享肽段,包括酿酒酵母的蛋白质,而酿酒酵母几乎没有或根本没有专门的发育和神经学蛋白质。因此,确定与其他组成相似的蛋白质组相比,这些专门的蛋白质是否具有过量的简单序列是很有意义的。我们已经确定了神经学蛋白质中简单序列的相对丰度,发现在这一类蛋白质中不存在过量的重复简单序列。事实上,与许多神经退行性疾病相关的聚谷氨酰胺重复序列在神经学专门蛋白质中的丰度并不比非神经学蛋白质集合中的丰度高。我们还研究了丝氨酸同聚物的密码子组成,以确定哪些力量可能在延伸同聚物的进化中起作用。密码子类型同质性往往更受青睐,这表明复制滑移而非选择是产生这些同聚物的主要力量。

相似文献

1
Neurological proteins are not enriched for repetitive sequences.
Genetics. 2004 Mar;166(3):1141-54. doi: 10.1534/genetics.166.3.1141.
4
Selection and slippage creating serine homopolymers.
Mol Biol Evol. 2006 Nov;23(11):2017-25. doi: 10.1093/molbev/msl073. Epub 2006 Jul 28.
5
Evolution of simple sequence in proteins.
J Mol Evol. 2000 Aug;51(2):131-40. doi: 10.1007/s002390010073.
7
Highly constrained proteins contain an unexpectedly large number of amino acid tandem repeats.
Genomics. 2007 Mar;89(3):316-25. doi: 10.1016/j.ygeno.2006.11.011. Epub 2006 Dec 28.
8
Insight into role of selection in the evolution of polyglutamine tracts in humans.
PLoS One. 2012;7(7):e41167. doi: 10.1371/journal.pone.0041167. Epub 2012 Jul 25.
9
RCPdb: An evolutionary classification and codon usage database for repeat-containing proteins.
Genome Res. 2007 Jul;17(7):1118-27. doi: 10.1101/gr.6255407. Epub 2007 Jun 13.
10
Evolution of N-terminal sequences of the vertebrate HOXA13 protein.
Mamm Genome. 2000 Feb;11(2):151-8. doi: 10.1007/s003350010029.

引用本文的文献

1
Single Amino Acid Repeats in the Proteome World: Structural, Functional, and Evolutionary Insights.
PLoS One. 2016 Nov 28;11(11):e0166854. doi: 10.1371/journal.pone.0166854. eCollection 2016.
2
Immune Modulation and Prevention of Autoimmune Disease by Repeated Sequences from Parasites Linked to Self Antigens.
J Neuroimmune Pharmacol. 2016 Dec;11(4):749-762. doi: 10.1007/s11481-016-9701-x. Epub 2016 Aug 12.
3
Genome-wide comparative analysis of simple sequence coding repeats among 25 insect species.
Gene. 2012 Aug 10;504(2):226-32. doi: 10.1016/j.gene.2012.05.020. Epub 2012 May 23.
5
Comparative genomic analysis of Drosophila melanogaster and vector mosquito developmental genes.
PLoS One. 2011;6(7):e21504. doi: 10.1371/journal.pone.0021504. Epub 2011 Jul 6.
6
Codon-based tests of positive selection, branch lengths, and the evolution of mammalian immune system genes.
Immunogenetics. 2008 Sep;60(9):495-506. doi: 10.1007/s00251-008-0304-4. Epub 2008 Jun 26.

本文引用的文献

1
SYNTHETIC POLYPEPTIDES CONTAINING SIDE-CHAIN AMIDE GROUPS: WATER-INSOLUBLE POLYMERS.
Biochemistry. 1965 Apr;4:626-33. doi: 10.1021/bi00880a003.
2
Detecting cryptically simple protein sequences using the SIMPLE algorithm.
Bioinformatics. 2002 May;18(5):672-8. doi: 10.1093/bioinformatics/18.5.672.
3
Intrinsic disorder and protein function.
Biochemistry. 2002 May 28;41(21):6573-82. doi: 10.1021/bi012159+.
4
Simple sequences are rare in the Protein Data Bank.
Proteins. 2002 Jul 1;48(1):134-40. doi: 10.1002/prot.10150.
7
Amino acid runs in eukaryotic proteomes and disease associations.
Proc Natl Acad Sci U S A. 2002 Jan 8;99(1):333-8. doi: 10.1073/pnas.012608599.
9
Investigating protein conformation-based inheritance and disease in yeast.
Philos Trans R Soc Lond B Biol Sci. 2001 Feb 28;356(1406):169-76. doi: 10.1098/rstb.2000.0762.
10
Sequence complexity of disordered protein.
Proteins. 2001 Jan 1;42(1):38-48. doi: 10.1002/1097-0134(20010101)42:1<38::aid-prot50>3.0.co;2-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验