Suppr超能文献

基于密码子的正选择测试、分支长度与哺乳动物免疫系统基因的进化

Codon-based tests of positive selection, branch lengths, and the evolution of mammalian immune system genes.

作者信息

Hughes Austin L, Friedman Robert

机构信息

Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.

出版信息

Immunogenetics. 2008 Sep;60(9):495-506. doi: 10.1007/s00251-008-0304-4. Epub 2008 Jun 26.

Abstract

Using basic probability theory, we show that there is a substantial likelihood that even in the presence of strong purifying selection, there will be a number of codons in which the number of synonymous nucleotide substitutions per site (d (S)) exceeds the number of non-synonymous nucleotide substitutions per site (d (N)). In an empirical study, we examined the numbers of synonymous (b (S)) and non-synonymous substitutions (b (N)) along branches of the phylogenies of 69 single-copy orthologous genes from seven species of mammals. A pattern of b (N) > b (S) was most commonly seen in the shortest branches of the tree and was associated with a high coefficient of variation in both b (N) and b (S), suggesting that high stochastic error in b (N) and b (S) on short branches, rather than positive Darwinian selection, is the explanation of most cases where b (N) is greater than b (S) on a given branch. The branch-site method of Zhang et al. (Zhang, Nielsen, Yang, Mol Biol Evol, 22:2472-2479, 2005) identified 117 codons on 35 branches as "positively selected," but a majority of these codons lacked synonymous substitutions, while in the others, synonymous and non-synonymous differences per site occurred in approximately equal frequencies. Thus, it was impossible to rule out the hypothesis that chance variation in the pattern of mutation across sites, rather than positive selection, accounted for the observed pattern. Our results showed that b (N)/b (S) was consistently elevated in immune system genes, but neither the search for branches with b (N) > b (S) nor the branch-site method revealed this trend.

摘要

运用基本概率论,我们证明,即便存在强大的纯化选择,仍极有可能出现许多密码子,其中每个位点的同义核苷酸替换数(d(S))超过每个位点的非同义核苷酸替换数(d(N))。在一项实证研究中,我们考察了来自七种哺乳动物的69个单拷贝直系同源基因的系统发育树各分支上的同义替换数(b(S))和非同义替换数(b(N))。b(N) > b(S)的模式在树的最短分支中最为常见,并且与b(N)和b(S)的高变异系数相关,这表明短分支上b(N)和b(S)的高随机误差,而非正向达尔文选择,是给定分支上b(N)大于b(S)的大多数情况的解释。张等人(Zhang, Nielsen, Yang, Mol Biol Evol, 22:2472 - 2479, 2005)的分支位点方法在35个分支上鉴定出117个密码子为“正选择”,但这些密码子中的大多数缺乏同义替换,而在其他密码子中,每个位点的同义差异和非同义差异出现的频率大致相等。因此,无法排除位点间突变模式的随机变异而非正选择导致所观察到模式的假设。我们的结果表明,免疫系统基因中的b(N)/b(S)持续升高,但无论是寻找b(N) > b(S)的分支还是分支位点方法都未揭示这一趋势。

相似文献

1
Codon-based tests of positive selection, branch lengths, and the evolution of mammalian immune system genes.
Immunogenetics. 2008 Sep;60(9):495-506. doi: 10.1007/s00251-008-0304-4. Epub 2008 Jun 26.
2
Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level.
Mol Biol Evol. 2005 Dec;22(12):2472-9. doi: 10.1093/molbev/msi237. Epub 2005 Aug 17.
3
Selection Shapes Synonymous Stop Codon Use in Mammals.
J Mol Evol. 2020 Sep;88(7):549-561. doi: 10.1007/s00239-020-09957-x. Epub 2020 Jul 2.
5
The gene tree delusion.
Mol Phylogenet Evol. 2016 Jan;94(Pt A):1-33. doi: 10.1016/j.ympev.2015.07.018. Epub 2015 Jul 31.
6
Crossing fitness valleys via double substitutions within codons.
BMC Biol. 2019 Dec 16;17(1):105. doi: 10.1186/s12915-019-0727-4.
7
Statistical properties of the branch-site test of positive selection.
Mol Biol Evol. 2011 Mar;28(3):1217-28. doi: 10.1093/molbev/msq303. Epub 2010 Nov 18.
8
Molecular evolution of synonymous codon usage in Populus.
BMC Evol Biol. 2008 Nov 4;8:307. doi: 10.1186/1471-2148-8-307.
9
On the varied pattern of evolution of 2 fungal genomes: a critique of Hughes and Friedman.
Mol Biol Evol. 2006 Dec;23(12):2279-82. doi: 10.1093/molbev/msl122. Epub 2006 Sep 18.
10
Variation in the pattern of synonymous and nonsynonymous difference between two fungal genomes.
Mol Biol Evol. 2005 May;22(5):1320-4. doi: 10.1093/molbev/msi120. Epub 2005 Mar 2.

引用本文的文献

2
Evolution of tandem repeats in putative circumsporozoite protein to enhance its function: A recent and exclusive event in in India.
Curr Res Microb Sci. 2025 Jun 27;9:100432. doi: 10.1016/j.crmicr.2025.100432. eCollection 2025.
3
Allelic Variation and Selection in Effector Genes of (Mont.) de Bary.
Pathogens. 2020 Jul 9;9(7):551. doi: 10.3390/pathogens9070551.
4
Evolutionary dynamics and molecular epidemiology of in New York State: 1999-2015.
Virus Evol. 2019 Jul 21;5(2):vez020. doi: 10.1093/ve/vez020. eCollection 2019 Jul.
6
Significance of positive selection and gene duplication in adaptive evolution: in memory of Austin L. Hughes.
Immunogenetics. 2016 Nov;68(10):749-753. doi: 10.1007/s00251-016-0937-7. Epub 2016 Jul 26.
8
Accumulation of slightly deleterious mutations in the mitochondrial genome: a hallmark of animal domestication.
Gene. 2013 Feb 15;515(1):28-33. doi: 10.1016/j.gene.2012.11.064. Epub 2012 Dec 10.
9
Molecular evolution of teleost neural isozymes.
J Mol Evol. 2012 Dec;75(5-6):198-213. doi: 10.1007/s00239-012-9532-1. Epub 2012 Nov 25.
10
Characterisation of four major histocompatibility complex class II genes of the koala (Phascolarctos cinereus).
Immunogenetics. 2013 Jan;65(1):37-46. doi: 10.1007/s00251-012-0658-5. Epub 2012 Oct 23.

本文引用的文献

1
Alignment uncertainty and genomic analysis.
Science. 2008 Jan 25;319(5862):473-6. doi: 10.1126/science.1151532.
2
Looking for Darwin in all the wrong places: the misguided quest for positive selection at the nucleotide sequence level.
Heredity (Edinb). 2007 Oct;99(4):364-73. doi: 10.1038/sj.hdy.6801031. Epub 2007 Jul 11.
3
GenBank.
Nucleic Acids Res. 2007 Jan;35(Database issue):D21-5. doi: 10.1093/nar/gkl986.
4
Ensembl 2007.
Nucleic Acids Res. 2007 Jan;35(Database issue):D610-7. doi: 10.1093/nar/gkl996. Epub 2006 Dec 5.
6
Molecular evolution of the brain size regulator genes CDK5RAP2 and CENPJ.
Gene. 2006 Jun 21;375:75-9. doi: 10.1016/j.gene.2006.02.019. Epub 2006 Mar 14.
7
High level of functional polymorphism indicates a unique role of natural selection at human immune system loci.
Immunogenetics. 2005 Dec;57(11):821-7. doi: 10.1007/s00251-005-0052-7. Epub 2005 Oct 29.
8
Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level.
Mol Biol Evol. 2005 Dec;22(12):2472-9. doi: 10.1093/molbev/msi237. Epub 2005 Aug 17.
9
10
Empirical codon substitution matrix.
BMC Bioinformatics. 2005 Jun 1;6:134. doi: 10.1186/1471-2105-6-134.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验